Fluid Mechanics, 8 Ed
Fluid Mechanics, 8 Ed
8th Edition
ISBN: 9789385965494
Author: Frank White
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 11, Problem 11.33P
To determine

(a)

The value of the diameter.

Expert Solution
Check Mark

Answer to Problem 11.33P

The required value of the diameter is 47cm

Explanation of Solution

Given Information:

Fluid Mechanics, 8 Ed, Chapter 11, Problem 11.33P , additional homework tip  1

BEPflowrate=2000gal/minDiameter(d)=16inSpeed(n)=1200r/min

Formula used:

η1=η2=γQ1H1P1

Q1n1D13=Q2n2D23

gH1n12D12=gH2n22D22

Calculation:

To solve this problem, we are taking the value of specific weight of the water as γ=9790N/m3.

Now we will find the efficiency;

η1=η2=γQ1H1P1 ;

Put the values in the above equation;

(9790N/m3)(7.57/60m3/s)(24.67m)(48x746W)

0.851

85.1%

Now we will use the scaling laws for BEP flow rate and head;

Q1n1D13=7.57(1200)(0.406)3=Q2n2D23=15.14n2D23

gH1n12D12=(9.81)(24.67)(1200)2(0.406)2=gH2n22D22=(9.81)(54.86)n22D22

Solve for D2 and n2 simultaneously:

D2=47cm

n2=1545r/min.

To determine

(b)

The speed that will deliver a BEP water flow rate of 15.14m3/min and a head of 54.86m.

Expert Solution
Check Mark

Answer to Problem 11.33P

The required value of the speed is 1545r/min

Explanation of Solution

Given information:

Fluid Mechanics, 8 Ed, Chapter 11, Problem 11.33P , additional homework tip  2

BEPflowrate=2000gal/minDiameter(d)=16inSpeed(n)=1200r/min

Formula used:

Q1n1D13=Q2n2D23

gH1n12D12=gH2n22D22

Calculation:

Explained in the above part;

Repeat:

Now we will use the scaling laws for BEP flow rate and head;

Q1n1D13=7.57(1200)(0.406)3=Q2n2D23=15.14n2D23

gH1n12D12=(9.81)(24.67)(1200)2(0.406)2=gH2n22D22=(9.81)(54.86)n22D22

Solve for D2 and n2 simultaneously:

D2=47cm

n2=1545r/min.

To determine

(c)

The brake horsepower.

Expert Solution
Check Mark

Answer to Problem 11.33P

The required value of the brake horsepower is 213hp

Explanation of Solution

Given Information:

Fluid Mechanics, 8 Ed, Chapter 11, Problem 11.33P , additional homework tip  3

BEPflowrate=2000gal/minDiameter(d)=16inSpeed(n)=1200r/min

Formula used:

P2=γQ2H2η2

Calculation:

We know the formula for the required horse power, i.e.: P2=γQ2H2η2 ;

Put the values in the above equation

P2=γQ2H2η2=(9790)(15.14/60)(54.86)0.8531.59kW/746213hp.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A container filled with 70 kg of liquid water at 95°C is placed in a 90-m3 room that is initially at 12°C. Thermal equilibrium is established after a while as a result of heat transfer between the water and the air in the room. Assume the room is at the sea level, well sealed, and heavily insulated. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.         Determine the amount of heat transfer between the water and the air in the room.    The amount of heat transfer between the water and the air in the room is  kJ.
A strain gauge rosette that is attached to the surface of a stressed component gives 3 readings (ɛa = A, b = B, &c = C). If the strain gauge rosette is of the D° type (indicating the angle between each of the gauges), construct a Mohr's Strain Circle overleaf. You should assume that gauge A is aligned along the x-axis. Using the Mohr's Strain Circle calculate the: (i) principal strains (ε1, 2)? (ii) principal angles (1, 2)? You should measure these anticlockwise from the y-axis. (iii) maximum shear strain in the plane (ymax)?
Q1. If the yield stress (σy) of a material is 375MPa, determine whether yield is predicted for the stresses acting on both the elements shown below using: (a) Tresca Criterion (b) Von Mises Criterion P Element A R S Element B Note: your values for P (vertical load on Element A) should be negative (i.e. corresponding to a compressive vertical load).

Chapter 11 Solutions

Fluid Mechanics, 8 Ed

Ch. 11 - Prob. 11.11PCh. 11 - Prob. 11.12PCh. 11 - Pl 1.13 A 3.5 hp pump delivers 1140 lbf of...Ch. 11 - Prob. 11.14PCh. 11 - Prob. 11.15PCh. 11 - Prob. 11.16PCh. 11 - Prob. 11.17PCh. 11 - Prob. 11.18PCh. 11 - Pl 1.19 A centrifugal pump has r2 = 9 in, b2 = 2...Ch. 11 - Prob. 11.20PCh. 11 - Prob. 11.21PCh. 11 - Prob. 11.22PCh. 11 - P11.23 When pumping water, (a) at what speed...Ch. 11 - Prob. 11.24PCh. 11 - Prob. 11.25PCh. 11 - Prob. 11.26PCh. 11 - Prob. 11.27PCh. 11 - Prob. 11.28PCh. 11 - Tests by the Byron Jackson Co. of a...Ch. 11 - A pump, geometrically similar to the 12.95-in...Ch. 11 - Prob. 11.31PCh. 11 - Prob. 11.32PCh. 11 - Prob. 11.33PCh. 11 - You are asked to consider a pump geometrically...Ch. 11 - Prob. 11.35PCh. 11 - Prob. 11.36PCh. 11 - Prob. 11.37PCh. 11 - Prob. 11.38PCh. 11 - Prob. 11.39PCh. 11 - Prob. 11.40PCh. 11 - Prob. 11.41PCh. 11 - Prob. 11.42PCh. 11 - The 28-in-diameter pump in Fig. 11.7a at 1170...Ch. 11 - Prob. 11.44PCh. 11 - Prob. 11.45PCh. 11 - Prob. 11.46PCh. 11 - PI 1.47 A pump must be designed to deliver 6 m /s...Ch. 11 - Pl 1.48 Using the data for the pump in Prob. Pl...Ch. 11 - Prob. 11.49PCh. 11 - Prob. 11.50PCh. 11 - Prob. 11.51PCh. 11 - Prob. 11.52PCh. 11 - Prob. 11.53PCh. 11 - Prob. 11.54PCh. 11 - Prob. 11.55PCh. 11 - Prob. 11.56PCh. 11 - Prob. 11.57PCh. 11 - Prob. 11.58PCh. 11 - Suppose it is desired to deliver 700 ftVmin of...Ch. 11 - Prob. 11.60PCh. 11 - Prob. 11.61PCh. 11 - Prob. 11.62PCh. 11 - Pl 1.63 A good curve-fit to the head vs. flow for...Ch. 11 - Prob. 11.64PCh. 11 - *P11.65 An 11.5-in-diameter centrifugal pump,...Ch. 11 - Pl 1.66 It is proposed to run the pump of Prob. Pl...Ch. 11 - Prob. 11.67PCh. 11 - Prob. 11.68PCh. 11 - The pump of Prob. P1138, running at 3500 r/min, is...Ch. 11 - Prob. 11.70PCh. 11 - Prob. 11.71PCh. 11 - Prob. 11.72PCh. 11 - Prob. 11.73PCh. 11 - Prob. 11.74PCh. 11 - Prob. 11.75PCh. 11 - Prob. 11.76PCh. 11 - Prob. 11.77PCh. 11 - Prob. 11.78PCh. 11 - Prob. 11.79PCh. 11 - Determine if either (a) the smallest or (b) the...Ch. 11 - Prob. 11.81PCh. 11 - Prob. 11.82PCh. 11 - Prob. 11.83PCh. 11 - Prob. 11.84PCh. 11 - Prob. 11.85PCh. 11 - Prob. 11.86PCh. 11 - Prob. 11.87PCh. 11 - Prob. 11.88PCh. 11 - A Pelton wheel of 12-ft pitch diameter operates...Ch. 11 - Prob. 11.90PCh. 11 - Prob. 11.91PCh. 11 - Prob. 11.92PCh. 11 - Prob. 11.93PCh. 11 - Prob. 11.94PCh. 11 - Prob. 11.95PCh. 11 - Prob. 11.96PCh. 11 - Prob. 11.97PCh. 11 - Prob. 11.98PCh. 11 - Prob. 11.99PCh. 11 - Prob. 11.100PCh. 11 - Prob. 11.101PCh. 11 - Prob. 11.102PCh. 11 - Prob. 11.103PCh. 11 - Prob. 11.104PCh. 11 - Prob. 11.105PCh. 11 - Prob. 11.106PCh. 11 - Prob. 11.107PCh. 11 - Prob. 11.108PCh. 11 - Prob. 11.1WPCh. 11 - Prob. 11.2WPCh. 11 - Prob. 11.3WPCh. 11 - Prob. 11.4WPCh. 11 - Prob. 11.5WPCh. 11 - Consider a dimensionless pump performance chart...Ch. 11 - Prob. 11.7WPCh. 11 - Prob. 11.8WPCh. 11 - Prob. 11.9WPCh. 11 - Prob. 11.10WPCh. 11 - Prob. 11.1CPCh. 11 - Prob. 11.2CPCh. 11 - Prob. 11.3CPCh. 11 - Prob. 11.4CPCh. 11 - Prob. 11.5CPCh. 11 - Prob. 11.6CPCh. 11 - Prob. 11.7CPCh. 11 - Prob. 11.8CPCh. 11 - Prob. 11.1DP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license