EBK INTRODUCTION TO CHEMICAL ENGINEERIN
EBK INTRODUCTION TO CHEMICAL ENGINEERIN
8th Edition
ISBN: 9781259878091
Author: SMITH
Publisher: MCGRAW HILL BOOK COMPANY
Question
100%
Book Icon
Chapter 11, Problem 11.2P
Interpretation Introduction

Interpretation:

Mixture volume V when 750 cm3 of pure species 1(ethanol) is mixed with 1500 cm3 of species 2 (methyl butyl ether) at 250C and ideal solution volume Vid should be calculated.

Concept Introduction:

Mole fraction x1 and x2 will be calculated first. Mole of a species will be calculated by dividing its total volume by its specific volume. Mole fraction of a species corresponds to its total mole divided by total mole of the mixture.

  ΔV will be calculated next after putting x1 and x2 value in the given expression.

  VE=VxiVi and VE=ΔV

Since ΔV, V1, V2, x1 and x2 are known, V can be calculated. Here V is volume per mol. To calculate total mixture volume, V is to be multiplied with total mole of mixture.

Ideal solution volume of mixture Vid=xiVi . Since, V1, V2, x1 and x2 are known, Vid can be calculated unit of which will be in volume per mol. To calculate total ideal mixture volume, Vid is to be multiplied with total mole of mixture.

Blurred answer
Students have asked these similar questions
Figure below shows a portion of a fire protection system in which apump draws water at 60 F from a reservoir and delivers it to point B at the flow rate of 1500 gal/min   a). Calculate the required height of the water level in the tank in order to maintain 5.0 psig pressure at point A. Answer: h = 12,6 ft   b). Assuming that the pressure at A is 5.0 psig, calculate the power delivered by the pump to the water in order to maintain the pressure at point B at 85 kPa. Include energy lost due to friction but neglect any other energy losses. P₁ =19,2 hp
Water at 60° F is being pumped from a stream to a reservoir whose surface is 210 ft above the pump. The pipe from the pump to the reservoir is an 8-in Schedule 40 steel pipe 2500 ft long. The pressure at the pump inlet is - 2,36 psig. If 4.00 ft³/s is being pumped,   a). Compute the pressure at the outlet of the pump. Answer: 0,997 MPa   b). Compute the power delivered by the pump to the water. Answer: 151 hp   Consider the friction loss in the discharged line, but neglect other losses
1. Consider a mixture of 2.5.0% ethane, 2.0% butane, and 1.7% n-pentane by volume.a. Estimate the LFL and UFL of the mixture. Is it flammable?b. Estimate the LOC for this mixture.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The