Materials for Civil and Construction Engineers (4th Edition)
Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
Question
Book Icon
Chapter 11, Problem 11.27QP

(a)

To determine

The modulus of elasticity of the reinforced concrete.

(b)

To determine

The load carried by the each of the steel and plain concrete.

(c)

To determine

The minimum required cross sectional area of the column.

Blurred answer
Students have asked these similar questions
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli of elasticity of plain concrete and steel are 25 and207 GPa, respectively, and the cross-sectional area of steel is 2% of that of thereinforced concrete. Considering the column as a structural member made of a composite material and subjected to load parallel to the steel rebars, calculate the following:a. the modulus of elasticity of the reinforced concreteb. the load carried by each of the steel and plain concretec. the minimum required cross-sectional area of the column given that the allowable compressive stress of plain concrete is 20 MPa and that the allowable compressive stress of plain concrete will be reached before that of steel.
The composite bar shown in the figure is firmly attached to unyielding supports. An Axial force P 52 kips is applied at 65° F. Compute the stress (ksi) in the Aluminum at 116 °F. Assume a = 6.5 x 106/° F for steel and 12.8 x 106°F for aluminum Given: L1 = 17in; L2 = 13in %3D %3D Your final answer should contain two decimal places Aluminum A = 2 in? E = 10 x 10 psi Steel A = 3 in? E = 29 x 10 psi L1 - L2
The composite bar shown in the figure is firmly attached to unyielding supports. An Axial force P = 52 kips is applied at 65°F. Compute the stress (ksi) in the Aluminum at 116 °F. Assume a = 6.5 x 10-6/° F for steel and 12.8 x 106/°F for aluminum Given: L1 = 15in; L2 = 11in Your final answer should contain two decimal places Steel A = 3 in² E = 29 x 106 psi Correct Answer: 3.92 L2 Aluminum A = 2 in² E = 10 x 106 psi L1
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,
Text book image
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning