Materials for Civil and Construction Engineers (4th Edition)
4th Edition
ISBN: 9780134320533
Author: Michael S. Mamlouk, John P. Zaniewski
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 11.27QP
(a)
To determine
The modulus of elasticity of the reinforced concrete.
(b)
To determine
The load carried by the each of the steel and plain concrete.
(c)
To determine
The minimum required cross sectional area of the column.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli of elasticity of plain concrete and steel are 25 and207 GPa, respectively, and the cross-sectional area of steel is 2% of that of thereinforced concrete. Considering the column as a structural member made of a composite material and subjected to load parallel to the steel rebars, calculate the following:a. the modulus of elasticity of the reinforced concreteb. the load carried by each of the steel and plain concretec. the minimum required cross-sectional area of the column given that the allowable compressive stress of plain concrete is 20 MPa and that the allowable compressive stress of plain concrete will be reached before that of steel.
The composite bar shown in the figure is firmly
attached to unyielding supports. An Axial force P
52 kips is applied at 65° F. Compute the stress
(ksi) in the Aluminum at 116 °F. Assume a = 6.5 x
106/° F for steel and 12.8 x 106°F for aluminum
Given: L1 = 17in; L2 = 13in
%3D
%3D
Your final answer should contain two decimal
places
Aluminum
A = 2 in?
E = 10 x 10 psi
Steel
A = 3 in?
E = 29 x 10 psi
L1
- L2
The composite bar shown in the figure is firmly attached to unyielding supports. An Axial force P = 52 kips is applied at 65°F. Compute
the stress (ksi) in the Aluminum at 116 °F. Assume a = 6.5 x 10-6/° F for steel and 12.8 x 106/°F for aluminum
Given: L1 = 15in; L2 = 11in
Your final answer should contain two decimal places
Steel
A = 3 in²
E = 29 x 106 psi
Correct Answer: 3.92
L2
Aluminum
A = 2 in²
E = 10 x 106 psi
L1
Chapter 11 Solutions
Materials for Civil and Construction Engineers (4th Edition)
Ch. 11 - Prob. 11.1QPCh. 11 - Prob. 11.2QPCh. 11 - Prob. 11.3QPCh. 11 - Prob. 11.4QPCh. 11 - Prob. 11.5QPCh. 11 - Prob. 11.6QPCh. 11 - Prob. 11.7QPCh. 11 - Prob. 11.8QPCh. 11 - Prob. 11.9QPCh. 11 - What are the functions of aggregate used in...
Ch. 11 - Prob. 11.11QPCh. 11 - Prob. 11.12QPCh. 11 - What are the benefits of adding dispersed steel...Ch. 11 - Getting measurements from Figure 11.20, determine...Ch. 11 - Three 6 in. 12 in. concrete cylinders with...Ch. 11 - Prob. 11.16QPCh. 11 - Prob. 11.17QPCh. 11 - Prob. 11.18QPCh. 11 - Prob. 11.19QPCh. 11 - Prob. 11.20QPCh. 11 - Prob. 11.21QPCh. 11 - Prob. 11.22QPCh. 11 - Prob. 11.23QPCh. 11 - Prob. 11.24QPCh. 11 - Prob. 11.25QPCh. 11 - Prob. 11.26QPCh. 11 - Prob. 11.27QPCh. 11 - Prob. 11.28QPCh. 11 - Prob. 11.29QPCh. 11 - Prob. 11.30QPCh. 11 - A circular FRP composite rod with continuous and...
Knowledge Booster
Similar questions
- A composite column is formed by placing a steel bar 20 mm diameter and 200 mm long, inside an alloy cylinder of the same length whose internal and external diameters are 20 mm and 25 mm respectively. The column is then subjected to an axial load of 50 kN. Modulus of elasticity for steel and alloy is 200000MPa and 70000MPa respectively. Which of the following gives the stress in the alloy? a. 74.80 MPa b. 99.74 MPa c. 46.54 MPa d. 132.98 MPaarrow_forwardThe cross-section of the reinforced concrete beam having an effective depth of 500 mm is shown in the figure (not drawn to the scale). The grades of concrete and steel used are M35 and Fe550, respectively. The area of tension reinforcement is 400 mm?. It is given that the corresponding to 0.2% proof stress, the material safety factor is 1.15 and the yield strain of Fe550 steel is 0.0044. 500 mm 100 mm 200 mm 0 A, = 400 mm? As per IS 456:2000, the limiting depth (in mm, round off to nearest integer) of the neutral axis measured from the extreme compression fiber, is ww 00arrow_forwardThe composite bar in the figure is stress-free before the axial loads P₁ and P2 are applied. Assuming that the walls are rigid, calculate the stress in each material if P₁= 150 kN and P₂ = 90 kN. Aluminum Steel Bronze A = 900 mm² A = 2000 mm² A = 1200 mm² E = 70 GPa E = 200 GPa E = 83 GPa P₁ 500 mm P₂ 250 mm 350 mm (a) Determine the stress in the aluminum. (b) Determine the stress in the steel. (c) Determine the stress in the bronze.arrow_forward
- 14. The composite bar in the figure is stress-free before the axial loads PI and P2 are applied. Assuming that the left wall is rigid, while the right wall yields 0.80mm. calculate the stress in each material if PI = 150 kN and P2 = 90 kN. Aluminum Steel 150 kN 500 mm Bronze 1 90 KN 250 mm 350 mm 0.8 mmarrow_forwardTopic Solid mechanicsarrow_forwardEXAMPLE: 14. The composite bar in the figure is stress-free before the axial loads PI and P2 are applied. Assuming that the left wall is rigid, while the right wall yields 0.80mm. calculate the stress in each material if PI = 150 kN and P2 = 90 kN. Aluminum 150 kN 500 mm Steel Bronze 90 KN 250 mm 350 mm 0.8 mmarrow_forward
- A reinforced concrete beam of rectangular section has the cross-sectional dimensions shown in the figure below. The concrete of normal density has a compressive strength of 30 MPa and a modulus of rupture of 3.3 MPa. The yield strength of steel is 400 MPa. a) Calculate the stress due to an applied bending moment of 45 kN-m b) Calculate the bending moment at which cracking of concrete will be initiated (cracking moment Mcr) h=600 mm b=300 mm 키 As-2000 mm 4- No 25 d=530 mmarrow_forwardFor the cross section shown below, the material and sectional properties are given as follows: Determine the modular ratio. The concrete modulus of elasticity can be estimated by [psi] where must be in unit psi. (b) Draw the transformed section. (C) Show that the cross-section is elastic and does not have cracks when a bending moment of 1,000 kips-in is applied. Also, given the bending moment, find the maximum stress in concrete and steel. The neutral axis is at 11.05 in. from the top surface, and the moment of inertia around the neutral axis is 26676 in4.arrow_forwardA short reinforced concrete column is subjected to a 1000 kN axial compressive load. Themoduli of elasticity of plain concrete and steel are 25 GPa and 207 GPa, respectively, and thecross-sectional area of steel is 2% of that of the reinforced concrete. Considering the columnas a structural member made of a composite material and subjected to load parallel to the steelrebars, calculate the following:a) The modulus of elasticity of the reinforced concreteb) The load carried by each of the steel and plain concretec) The minimum required cross-sectional area of the column given that the allowablecompressive stress of plain concrete is 20 MPa and that the allowable compressivestress of plain concrete will be reached before that of steelarrow_forward
- A composite column is formed by placing a steel bar, 20 mm in diameter and 200 mm long, inside an alloy cylinder of the same length whose internal and external diameters are 20 mm and 25 mm, respectively. The column is then subjected to an axial load of 50 kN. If E for steel is 200 OOO N/mm’ and E for the alloy is 70 000 N/mm’, calculate the stress in the cylinder and in the bar, the shortening of the column and the strain energy stored in the column.arrow_forwardDetermine the tensile steel ratio of a singly reinforced concrete beam for the following conditions using concrete strength f’c = 28 MPa and steel yield strength fy = 420 MPa. 1. if the tensile strain is εs = fy/Es upon crushing of concrete at a strain of 0.003. = (5 decimal places) 2. if the tensile strain is set as 0.010 upon crushing of concrete at a strain of 0.003. = (5 decimal places) 3. Minimum as required by NSCP 2015. = (5 decimal places)arrow_forwardThe trimetallic composite section in Figure 4 is compressed by an axial load P = 12 kN applied through a rigid plate. The section consists of a circular steel core surrounded by 2 brass and copper shells. The steel core has a diameter of 10mm, the brass shell has an external diameter of 15mm, and the copper shell has an external diameter of 20mm. The corresponding modulus of elasticity are Ea = 210 GPa, El = 100 GPa and Ec = 120 GPa.(a) Calculate the compressive stress σa, σl, and σc, in the steel, brass, and copper, respectively, that produces the force P.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning