Concept explainers
(a)
Interpretation:
Whether the given integrals involving harmonic oscillator wavefunctions is identically zero, not identically zero or indeterminate is to be determined.
Concept introduction:
In
Answer to Problem 11.22E
The given integral is identically zero.
Explanation of Solution
The wavefunction
The wavefunction
Substitute the value of
The integration of harmonic oscillator is solved using Hermite polynomials. The integral of Hermite polynomials is solved by the formula given in Table 11.2.
In the given integral, the wavefunctions are
The given integral is identically zero.
(b)
Interpretation:
Whether the given integrals involving harmonic oscillator wavefunctions is identically zero, not identically zero or indeterminate is to be determined.
Concept introduction:
In quantum mechanics, the wavefunction is given by
Answer to Problem 11.22E
The given integral is identically zero.
Explanation of Solution
The wavefunction
Substitute the value of
In the above equation,
The given integral is identically zero.
(c)
Interpretation:
Whether the given integrals involving harmonic oscillator wavefunctions is identically zero, not identically zero or indeterminate is to be determined.
Concept introduction:
In quantum mechanics, the wavefunction is given by
Answer to Problem 11.22E
The given integral is not identically zero.
Explanation of Solution
The wavefunction
Substitute the value of
In the above equation,
The given integral is not identically zero.
(d)
Interpretation:
Whether the given integrals involving harmonic oscillator wavefunctions is identically zero, not identically zero or indeterminate is to be determined.
Concept introduction:
In quantum mechanics, the wavefunction is given by
Answer to Problem 11.22E
The given integral is identically zero.
Explanation of Solution
The wavefunction
The wavefunction
Substitute the value of
The integration of harmonic oscillator is solved using Hermite polynomials. The integral of Hermite polynomials is solved by the formula given in Table 11.2.
In the given integral, the wavefunctions are
The given integral is identically zero.
(e)
Interpretation:
Whether the given integrals involving harmonic oscillator wavefunctions is identically zero, not identically zero or indeterminate is to be determined.
Concept introduction:
In quantum mechanics, the wavefunction is given by
Answer to Problem 11.22E
The given integral is not identically zero.
Explanation of Solution
The wavefunction
Substitute the value of
The integration of harmonic oscillator is solved using Hermite polynomials. The integral of Hermite polynomials is solved by the formula given in Table 11.2.
In the given integral, the wavefunctions are
The given integral is not identically zero.
(f)
Interpretation:
Whether the given integrals involving harmonic oscillator wavefunctions is identically zero, not identically zero or indeterminate is to be determined.
Concept introduction:
In quantum mechanics, the wavefunction is given by
Answer to Problem 11.22E
The given integral is indeterminate.
Explanation of Solution
The wavefunction
Substitute the value of
In the above equation,
The given integral is indeterminate.
Want to see more full solutions like this?
Chapter 11 Solutions
Physical Chemistry
- Definition and classification of boranes.arrow_forwardWhich of the terms explain the relationship between the two compounds? CH2OH Он Он Он Он α-D-galactose anomers enantiomers diastereomers epimers CH2OH ОН O он Он ОН B-D-galactosearrow_forwardHi, I need help on my practice final, If you could offer strategies and dumb it down for me with an explanation on how to solve that would be amazing and beneficial.arrow_forward
- Hi I need help with my practice final, it would be really helpful to offer strategies on how to solve it, dumb it down, and a detailed explanation on how to approach future similar problems like this. The devil is in the details and this would be extremely helpfularrow_forwardIn alpha-NbI4, Nb4+ should have the d1 configuration (bond with paired electrons: paramagnetic). Please comment.arrow_forwardHi, I need help on my practice final, if you could explain how to solve it offer strategies and dumb it down that would be amazing. Detail helpsarrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning