Concept explainers
(a)
Calculate the average stress increase in the clay layer due to the applied load.
(a)
Answer to Problem 11.21P
The average stress increase in the clay layer
Explanation of Solution
Given information:
The foundation load
The length of the foundation
The breadth of the foundation
The depth of foundation
The height of the clay layer 1
The height of the clay layer 2
The dry unit weight of sand
The saturated unit weight
The liquid limit
Calculation:
Consider the unit weight of water
Calculate the distributed load
Substitute
Calculate the increase in vertical stress
Here,
For the depth
Calculate the width
Substitute
Calculate the ratio
Substitute
Calculate the ratio
Substitute
Similarly calculate the remaining values and tabulate as in Table 1.
Refer Table 10.11 “Variation of
Take the value of
Similarly calculate the remaining values and tabulate as in Table 1.
Calculate the increase in vertical stress
Substitute
Similarly calculate the increase in vertical stress values and tabulate as in Table 1.
Show the increase in vertical stress for each depth below the center of the loaded area as in Table 1.
Depth, | |||||
1 | 1.25 | 1.75 | 1.4 | 0.522 | 39.92 |
1 | 1.25 | 3.5 | 2.8 | 0.210 | 16.06 |
1 | 1.25 | 5.25 | 4.2 | 0.10 | 7.65 |
Table 1
Refer to table 1.
Calculate the stress increase in the clay layer
Here,
Substitute
Hence, the average stress increase in the clay layer
(b)
Calculate the primary consolidation settlement.
(b)
Answer to Problem 11.21P
The primary consolidation settlement
Explanation of Solution
Given information:
The foundation load
The length of the foundation
The breadth of the foundation
The depth of foundation
The height of the clay layer 1
The height of the clay layer 2
The dry unit weight of sand
The saturated unit weight of sand
The liquid limit
The moisture content
The specific gravity of soil solids
The preconsolidation pressure
The swell index
Calculation:
Consider the unit weight of water
The stress at the middle of the clay layer
Calculate the compression index
Substitute
Calculate the swell index
Substitute
Calculate the saturated unit weight of clay layer
Substitute
Calculate the void ratio
Substitute
Calculate the average effective stress at the middle of the clay layer
Substitute
The effective stress
Check for the condition
Substitute
Calculate the primary consolidation settlement
Substitute
Therefore, the primary consolidation settlement
(c)
Calculate the degree of consolidation after 2 years.
(c)
Answer to Problem 11.21P
The degree of consolidation after 2 years
Explanation of Solution
Given information:
The settlement after 2 years
The foundation load
The length of the foundation
The breadth of the foundation
The depth of foundation
The height of the clay layer 1
The height of the clay layer 2
Calculation:
Refer to part (b).
The primary consolidation settlement
Calculate the degree of consolidation after 2 years
Substitute
Hence, the degree of consolidation
(d)
Calculate the coefficient of consolidation for the pressure range.
(d)
Answer to Problem 11.21P
The coefficient of consolidation of the clay
Explanation of Solution
Given information:
The settlement after 2 years
The foundation load
The length of the foundation
The breadth of the foundation
The depth of foundation
The height of the clay layer 1
The height of the clay layer 2
Calculation:
Refer to part (c).
The degree of consolidation
Calculate the time factor
Refer Table 11.7 “Variation of
Take the value of
Calculate the length of maximum drainage path
Substitute
Calculate the coefficient of consolidation
Substitute
Hence, the coefficient of consolidation of the clay
(e)
Calculate the settlement in 3 years.
(e)
Answer to Problem 11.21P
The time settlement in 3 years
Explanation of Solution
Given information:
The foundation load
The length of the foundation
The breadth of the foundation
The depth of foundation
The height of the clay layer 1
The height of the clay layer 2
The time
Calculation:
Refer to part (b).
The primary consolidation settlement
Refer to part (d).
The coefficient of consolidation of the clay
Calculate the time factor
Substitute
Calculate the degree of consolidation
Refer Table 11.7 “Variation of
Take the value of
Calculate the settlement in 3 years
Substitute
Therefore, the time settlement in 3 years
Want to see more full solutions like this?
Chapter 11 Solutions
EBK PRINCIPLES OF GEOTECHNICAL ENGINEER
- A load of P = 114 kN is supported by a structure consisting of rigid bar ABC, two identical solid bronze [E = 116 GPa] rods, and a solid steel [E=192 GPa] rod, as shown. The bronze rods (1) each have a diameter of 19 mm and they are symmetrically positioned relative to the center rod (2) and the applied load P. Steel rod (2) has a diameter of 28 mm. All bars are unstressed before the load P is applied; however, there is a 1.5-mm clearance in the bolted connection at B. Assume L₁ = 2.4m and L2 = 1.5 m. Determine: (a) the normal stresses in the bronze and steel rods (01,02). (b) the downward deflection of rigid bar ABC. (1) Answers: (a)σ1 = (b) vi L2 (2) (1) B P mm. Li MPa, 02 MPa. =arrow_forwardA high-density polvethelene (HD PE I9 - 780 MPaiy = 0.46 rod has a diameter of 70 mm before load Pis applied. In order to maintain certain clearances, the diameter of the rod must not exceed 72 mm when loaded. What is the largest permissible compressive load P that can be applied to the HDPE rod?arrow_forwardCurrent Attempt in Progress A load of P 117 kN is supported by a structure consisting of rigid bar ABC, two identical solid bronze [E= 83 GPa] rods, and a solid steel [E 182 GPa] rod, as shown. The bronze rods (1) each have a diameter of 20 mm and they are symmetrically positioned relative to the center rod (2) and the applied load P. Steel rod (2) has a diameter of 26 mm. All bars are unstressed before the load Pis applied; however, there is a 3.4-mm clearance in the bolted connection at B. Assume L₁ = 3.3 m and L2 = 1.6 m. Determine: (a) the normal stresses in the bronze and steel rods (01, 02). (b) the downward deflection v of rigid bar ABC. (1) Answers: L2 (2) (1) B P (a) σ = (b) y = eTextbook and Media Save for Later MPa. MPa, 02 = mm. Attempts: 0 of 5 used Submit Answerarrow_forward
- A vinyl [E= 2.60 GPa; v = 0.43] block with width b = 50 mm, depth d = 100 mm, and height h = 270 mm rests on a smooth rigid base. A load P is applied to a rigid plate that rests on top of the block. Calculate the change in the depth dimension d of the block after a load of P = 120 kN is applied. Rigid plate Answer: Ad= Width b Depth d Height Rigid base mmarrow_forwardAn aluminum [E = 11900 ksi] control rod with a circular cross section must not stretch more than 0.24 in. when the tension in the rod is 1980 lb. If the maximum allowable normal stress in the rod is 12.1 ksi, determine: (a) the smallest diameter d that can be used for the rod. (b) the corresponding maximum length L of the rod. Answers: (a) d = i (b) L = i in. in.arrow_forwardView Policies Current Attempt in Progress At an axial load of 19 kN, a 45-mm-wide by 15-mm-thick polyimide polymer bar elongates 2.7 mm while the bar width contracts 0.19 mm. The bar is 220 mm long. At the 19-kN load, the stress in the polymer bar is less than its proportional limit. Determine (a) the modulus of elasticity. (b) Poisson's ratio. (c) the change in the bar thickness. Answers: (a) E= (b) v= (c) Athickness eTextbook and Media Save for Later GPa mm Attempts: 0 of 5 used Submit Answerarrow_forward
- In the two-member assembly shown, find the axial force in rod (1) if P = 11.3 kips. 8 ft 12 ft O 4.45 kips 8.53 kips 9.38 kips O 7.24 kips 6.76 kips B 16 ftarrow_forwardFigure 3 shows the numerical solution of the advection equation for a scalar u along x at threeconsecutive timesteps.Provide an explanation what conditions and numerical setup could explain the curves. Identifywhich of the three curves is the first, second and third timestep.arrow_forwardRequired information For the beam shown, use only singularity functions. V₁-350 lbf, V2 35 lbf/in, V3-12 in, and V4 = 6 in. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. V1 V2 0 ZA V3 V4 V4 What is the value of the reaction force and the moment at O? The reaction force O is | The moment at point O is 650 lbf. lbf inarrow_forward
- Could you please draw the bending moment diagram for the shown frame. Please draw three, 1 for only the vertical load, 1 for the horizontal and 1 for combined.arrow_forwardProblem 2 Determine the force in each member of the truss shown by the method of joints. [10 marks] E 10 ft 5k 12 ft B 10 k 10 k 12 ftarrow_forwardV A W What is the degree of positioning (PG) of a cuboid body between two guiding surfaces? (Assumption: gravity ignored) U B W U C W U V V V PG = 0 PG = 1 PG = 2 D W PG = 3 Uarrow_forward
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning