
Concept explainers
(a)
Interpretation:
Balanced
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(b)
Interpretation:
Balanced nuclear equation for beta decay of carbon-14 has to be written.
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary chemical reactions because the electrons do not take part in reaction while the particle inside the nucleus does. Isotope and nuclide are almost similar terms. Isotopes refer to the same element that has different mass number while nuclide refers to atoms of same or different elements with specific atomic number and mass number.
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(c)
Interpretation:
Balanced nuclear equation for beta decay of
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary chemical reactions because the electrons do not take part in reaction while the particle inside the nucleus does. Isotope and nuclide are almost similar terms. Isotopes refer to the same element that has different mass number while nuclide refers to atoms of same or different elements with specific atomic number and mass number.
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.
(d)
Interpretation:
Balanced nuclear equation for beta decay of sodium-25 has to be written.
Concept Introduction:
If the reaction occurs in the nucleus of an atom then it is known as nuclear reaction. These reactions are not considered as ordinary chemical reactions because the electrons do not take part in reaction while the particle inside the nucleus does. Isotope and nuclide are almost similar terms. Isotopes refer to the same element that has different mass number while nuclide refers to atoms of same or different elements with specific atomic number and mass number.
This nuclear reaction can be represented by nuclear equation. This is not a normal chemical equation. Nuclear equation considers the mass number and atomic number of the reactants and products. Unstable nucleus tends to emit radiation spontaneously. During this process the nuclide is transformed into nuclide of another element. Parent nuclide is the one which undergoes the radioactive decay. Daughter nuclide is the one that is formed from parent nuclide after radioactive decay.
The radioactive decay can take place by emission of alpha particle, beta particle or gamma ray emission. Alpha particle decay is a process in which an alpha particle is emitted. This results in the formation of nuclide of different element that has atomic number that is 2 less and mass number that is 4 less than the original nucleus. Beta particle decay is a process in which a beta particle is emitted. This produces a nuclide of different element similar to that of alpha particle decay. The mass number is same as that of parent nuclide while the atomic number increases by 1 unit. Gamma ray emission is a process in which the unstable nucleus emits gamma ray. This occurs along with alpha or beta particle emission. The gamma rays are not shown in the nuclear equation because they do not affect balancing the nuclear equation.

Trending nowThis is a popular solution!

Chapter 11 Solutions
General, Organic, and Biological Chemistry Seventh Edition
- In one paragraph show how atoms and they're structure are related to the structure of dna and proteins. Talk about what atoms are. what they're made of, why chemical bonding is important to DNA?arrow_forwardWhat are the structure and properties of atoms and chemical bonds (especially how they relate to DNA and proteins).arrow_forwardThe Sentinel Cell: Nature’s Answer to Cancer?arrow_forward
- Molecular Biology Question You are working to characterize a novel protein in mice. Analysis shows that high levels of the primary transcript that codes for this protein are found in tissue from the brain, muscle, liver, and pancreas. However, an antibody that recognizes the C-terminal portion of the protein indicates that the protein is present in brain, muscle, and liver, but not in the pancreas. What is the most likely explanation for this result?arrow_forwardMolecular Biology Explain/discuss how “slow stop” and “quick/fast stop” mutants wereused to identify different protein involved in DNA replication in E. coli.arrow_forwardMolecular Biology Question A gene that codes for a protein was removed from a eukaryotic cell and inserted into a prokaryotic cell. Although the gene was successfully transcribed and translated, it produced a different protein than it produced in the eukaryotic cell. What is the most likely explanation?arrow_forward
- Molecular Biology LIST three characteristics of origins of replicationarrow_forwardMolecular Biology Question Please help. Thank you For E coli DNA polymerase III, give the structure and function of the b-clamp sub-complex. Describe how the structure of this sub-complex is important for it’s function.arrow_forwardMolecular Biology LIST three characteristics of DNA Polymerasesarrow_forward
- Principles Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning


