BIO TORQUES AND TUG-OF-WAR. In a study of the biomechanics of the tug-of-war, a 2.0-m-tall, 80.0-kg competitor in the middle of the line is considered to be a rigid body leaning back at an angle of 30.0° to the vertical. The competitor is pulling on a rope that is held horizontal a distance of 1.5 m from his feet (as measured along the line of the body). At the moment shown in the figure, the man is stationary and the tension in the rope in front of him is T 1 = 1160 N. Since there is friction between the rope and his hands, the tension in the rope behind him, T 2, is not equal to T 1 . His center of mass is halfway between his feet and the top of his head. The coefficient of static friction between his feet and the ground is 0.65. 11.92 What is tension T 2 in the rope behind him? (a) 590 N; (b) 650 N; (c) 860 N;(d) 1100 N.N.
BIO TORQUES AND TUG-OF-WAR. In a study of the biomechanics of the tug-of-war, a 2.0-m-tall, 80.0-kg competitor in the middle of the line is considered to be a rigid body leaning back at an angle of 30.0° to the vertical. The competitor is pulling on a rope that is held horizontal a distance of 1.5 m from his feet (as measured along the line of the body). At the moment shown in the figure, the man is stationary and the tension in the rope in front of him is T 1 = 1160 N. Since there is friction between the rope and his hands, the tension in the rope behind him, T 2, is not equal to T 1 . His center of mass is halfway between his feet and the top of his head. The coefficient of static friction between his feet and the ground is 0.65. 11.92 What is tension T 2 in the rope behind him? (a) 590 N; (b) 650 N; (c) 860 N;(d) 1100 N.N.
BIO TORQUES AND TUG-OF-WAR. In a study of the biomechanics of the tug-of-war, a 2.0-m-tall, 80.0-kg competitor in the middle of the line is considered to be a rigid body leaning back at an angle of 30.0° to the vertical. The competitor is pulling on a rope that is held horizontal a distance of 1.5 m from his feet (as measured along the line of the body). At the moment shown in the figure, the man is stationary and the tension in the rope in front of him is T1 = 1160 N. Since there is friction between the rope and his hands, the tension in the rope behind him, T2, is not equal to T1. His center of mass is halfway between his feet and the top of his head. The coefficient of static friction between his feet and the ground is 0.65.
11.92 What is tension T2 in the rope behind him? (a) 590 N; (b) 650 N; (c) 860 N;(d) 1100 N.N.
It is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The "lenses" of an
electron microscope consist of electric and magnetic fields that control the electron beam.
As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity ₁ = vi. As it passes through the region x = 0 to x=d, the electron experiences acceleration a = ai +a, where a and a, are constants. For the case v, = 1.67 x 107 m/s, ax = 8.51 x 1014 m/s², and a = 1.50 x 10¹5 m/s², determine the following at
x = d = 0.0100 m.
(a) the position of the electron
y, = 2.60e1014
m
(b) the…
No chatgpt pls
need help with the first part
Chapter 11 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.