USING + UNDERSTANDING MATH CUSTOM
6th Edition
ISBN: 9780137721023
Author: Bennett
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.B, Problem 78E
Designing Plastic Buckets. A company manufactures plastic buckets that are shaped like cylinders without a lid. Which will cost mare to manufacture: a bucket with a radius of 6 inches and a height of 18 inches or a bucket with a radius of 9 inches and a height of 15 inches? Assume that the plastic material costs $0.50 per square foot, but the bottom of each bucket must have double thickness.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
© ©
Q Tue 7 Jan 10:12 pm
myopenmath.com/assess2/?cid=253523&aid=17...
ookmarks
吕
Student Account...
8 Home | Participant... 001st Meeting with y...
E
F
D
c
G
B
H
I
A
J
P
K
L
N
M
Identify the special angles above. Give your answers in degrees.
A: 0
B: 30
C: 45
D: 60
E: 90
>
१
F: 120 0
G:
H:
1: 180 0
J:
K:
L: 240 0
Next-
M: 270 0
0:
ZÖÄ
N: 300 0
Aa
zoom
P:
Question Help: Message instructor
MacBook Air
Ο
O
Σ
>> | All Bookmarks
The cup on the 9th hole of a golf course is located dead center in the middle of a circular green which is 40 feet in radius. Your ball is located as in the picture below. The ball follows a straight line path and exits the green at the right-most edge. Assume the ball travels 8 ft/sec.
Introduce coordinates so that the cup is the origin of an xy-coordinate system and start by writing down the equations of the circle and the linear path of the ball. Provide numerical answers below with two decimal places of accuracy.
50 feet
green
ball
40 feet
9
cup
ball path
rough
(a) The x-coordinate of the position where the ball enters the green will be
(b) The ball will exit the green exactly
seconds after it is hit.
(c) Suppose that L is a line tangent to the boundary of the golf green and parallel to the path of the ball. Let Q be the point where the line is tangent to the circle. Notice that there are two possible positions for Q. Find the possible x-coordinates of Q:
smallest x-coordinate =…
Draw the unit circle and plot the point P=(8,2). Observe there are TWO lines tangent to the circle passing through the point P. Answer the questions below with 3 decimal places of accuracy.
P
L1
L
(a) The line L₁ is tangent to the unit circle at the point
(b) The tangent line L₁ has equation:
X +
(c) The line L₂ is tangent to the unit circle at the point (
(d) The tangent line 42 has equation:
y=
x +
).
Chapter 10 Solutions
USING + UNDERSTANDING MATH CUSTOM
Ch. 10.A - Prob. 1QQCh. 10.A - Prob. 2QQCh. 10.A - An acute angle is a. less than 90°. b. exactly...Ch. 10.A - 4. A regular polygon always has
a. four sides. b....Ch. 10.A - 5. A right triangle always has
three equal-length...Ch. 10.A - 6. The circumference of a circle of radius r...Ch. 10.A - The volume of a sphere of radius r is a. \[\pi...Ch. 10.A - Prob. 8QQCh. 10.A - If you triple the radius of a sphere, the volume...Ch. 10.A - Suppose you cut a large stone block into four...
Ch. 10.A - What do we mean by Euclidean geometry?Ch. 10.A - Prob. 2ECh. 10.A - What do we mean by dimension? How is dimension...Ch. 10.A - Prob. 4ECh. 10.A - What is plane geometry? What does it mean for...Ch. 10.A - 6. What is a polygon? How do we measure the...Ch. 10.A - What are the formulas for the circumference and...Ch. 10.A - 8. Describe how we calculate the volumes and...Ch. 10.A - What are the scaling laws for area and volume?...Ch. 10.A - Prob. 10ECh. 10.A - Prob. 11ECh. 10.A - Prob. 12ECh. 10.A - My bedroom is a rectangular prism that measures 12...Ch. 10.A - walked around the circular pond to a point on the...Ch. 10.A - Prob. 15ECh. 10.A - 16. By building a fence across my rectangular...Ch. 10.A - Prob. 17ECh. 10.A - Prob. 18ECh. 10.A - Angles and Circles. Find the degree measure of the...Ch. 10.A - 17-22: Angles and Circles. Find the degree measure...Ch. 10.A - 17-22: Angles and Circles. Find the degree measure...Ch. 10.A - 17-22: Angles and Circles. Find the degree measure...Ch. 10.A - Prob. 23ECh. 10.A - Prob. 24ECh. 10.A - Prob. 25ECh. 10.A - Prob. 26ECh. 10.A - Prob. 27ECh. 10.A - Prob. 28ECh. 10.A - Prob. 29ECh. 10.A - Prob. 30ECh. 10.A - Prob. 31ECh. 10.A - Prob. 32ECh. 10.A - Circle Practice. Find the circumference and area...Ch. 10.A - Prob. 34ECh. 10.A - Circle Practice. Find the circumference and area...Ch. 10.A - Prob. 36ECh. 10.A - Prob. 37ECh. 10.A - Prob. 38ECh. 10.A - Perimeters and Areas. Use Table 10.2 to find the...Ch. 10.A - Prob. 40ECh. 10.A - Prob. 41ECh. 10.A - Prob. 42ECh. 10.A - Triangle Geometry. Find the perimeter and area of...Ch. 10.A - Prob. 44ECh. 10.A - 43-46: Triangle Geometry. Find the perimeter and...Ch. 10.A - 43-46: Triangle Geometry. Find the perimeter and...Ch. 10.A - Window Space. A picture window has a length of 8...Ch. 10.A - A Running Track. A running track has straight legs...Ch. 10.A - Building Stairs. Refer to Figure 10.14, showing...Ch. 10.A - No Calculation Required. The end views of two...Ch. 10.A - Parking Lot. A parking lot is shaped like a...Ch. 10.A - Prob. 52ECh. 10.A - Prob. 53ECh. 10.A - Prob. 54ECh. 10.A - Three-Dimensional Objects. Use the formulas in...Ch. 10.A - Prob. 56ECh. 10.A - Prob. 57ECh. 10.A - 58. Water Canal. A water canal has a rectangular...Ch. 10.A - 59. Water Reservoir. The water reservoir for a...Ch. 10.A - 60. Oil Drums. Which holds more: an oil drum with...Ch. 10.A - Prob. 61ECh. 10.A - Architectural Model. Suppose you build an...Ch. 10.A - Architectural Model: Suppose you build an...Ch. 10.A - Prob. 64ECh. 10.A - Architectural Model: Suppose you build an...Ch. 10.A - Prob. 66ECh. 10.A - Architectural Model: Suppose you build an...Ch. 10.A - Prob. 68ECh. 10.A - Quadrupling Your Size. Suppose you magically...Ch. 10.A - Quadrupling Your Size. Suppose you magically...Ch. 10.A - Quadrupling Your Size. Suppose you magically...Ch. 10.A - 72-74: Comparing People. Consider a person named...Ch. 10.A - 72-74: Comparing People. Consider a person named...Ch. 10.A - Prob. 74ECh. 10.A - Squirrels or People? Squirrels and humans are both...Ch. 10.A - 75-76: Squirrels or People? Squirrels and humans...Ch. 10.A - Prob. 77ECh. 10.A - Prob. 78ECh. 10.A - Comparing Balls. Consider a softball with a radius...Ch. 10.A - Prob. 80ECh. 10.A - Dimension. Examine a closed book. How many...Ch. 10.A - Perpendicular and Parallel. Suppose you mark a...Ch. 10.A - Perpendicular and Parallel. Suppose you draw two...Ch. 10.A - Backyard. Figure 10.25 shows the layout of a...Ch. 10.A - Human Lung. The human lung has approximately 300...Ch. 10.A - 86. Automobile Engine Capacity. The size of a car...Ch. 10.A - Prob. 87ECh. 10.A - Prob. 88ECh. 10.A - Prob. 89ECh. 10.A - Prob. 90ECh. 10.A - The Geometry of Ancient Cultures. Research the use...Ch. 10.A - Surveying and GIS. Surveying is one of the oldest...Ch. 10.A - Platonic Solids. Why are there five and only five...Ch. 10.B - The number of minutes of are in a full circle is...Ch. 10.B - Prob. 2QQCh. 10.B - If you travel due east, you are traveling along a...Ch. 10.B - 4. If you are located at latitude 30°S and...Ch. 10.B - What would be different about the Sun if you...Ch. 10.B - Prob. 6QQCh. 10.B - If you are bicycling eastward up a hill with a 10%...Ch. 10.B - Prob. 8QQCh. 10.B - Prob. 9QQCh. 10.B - Prob. 10QQCh. 10.B - How do we describe fractions of a degree of angle?Ch. 10.B - Prob. 2ECh. 10.B - How is angular size related to physical size?Ch. 10.B - Prob. 4ECh. 10.B - Give at least two examples of ways in which the...Ch. 10.B - Prob. 6ECh. 10.B - Give an example of a practical problem that can be...Ch. 10.B - 8. What is an optimization problem? Give an...Ch. 10.B - 9. In December, it is winter at 70oW and 44oS.
Ch. 10.B - Prob. 10ECh. 10.B - Prob. 11ECh. 10.B - Prob. 12ECh. 10.B - Prob. 13ECh. 10.B - Prob. 14ECh. 10.B - Angle Conversions I. Convert the given degree...Ch. 10.B - 15-20: Angle Conversions I. Convert the given...Ch. 10.B - Prob. 17ECh. 10.B - Prob. 18ECh. 10.B - Prob. 19ECh. 10.B - Angle Conversions I. Convert the given degree...Ch. 10.B - 21-26: Angle Conversions II. Convert the given...Ch. 10.B - 21-26: Angle Conversions II. Convert the given...Ch. 10.B - Prob. 23ECh. 10.B - Prob. 24ECh. 10.B - Angle Conversions II. Convert the given angle...Ch. 10.B - Prob. 26ECh. 10.B - Prob. 27ECh. 10.B - Prob. 28ECh. 10.B - Prob. 29ECh. 10.B - Prob. 30ECh. 10.B - Prob. 31ECh. 10.B - Prob. 32ECh. 10.B - Prob. 33ECh. 10.B - Prob. 34ECh. 10.B - Prob. 35ECh. 10.B - Prob. 36ECh. 10.B - Angular Size. Use the formula relating angular...Ch. 10.B - Angular Size. Use the formula relating angular...Ch. 10.B - Angular Size. Use the formula relating angular...Ch. 10.B - Prob. 40ECh. 10.B - Prob. 41ECh. 10.B - Prob. 42ECh. 10.B - Prob. 43ECh. 10.B - Prob. 44ECh. 10.B - Prob. 45ECh. 10.B - 46. Grade of a Road. How much does a road with a...Ch. 10.B - 47. Pitch of a Roof. What is the angle (relative...Ch. 10.B - Grade of a Path. What is the approximate grade...Ch. 10.B - Prob. 49ECh. 10.B - Grade of a Trail. How much does a trail with a 22%...Ch. 10.B - Map Distances. Refer to the map in Figure 10.37....Ch. 10.B - Prob. 52ECh. 10.B - Prob. 53ECh. 10.B - Prob. 54ECh. 10.B - Prob. 55ECh. 10.B - Map Distances. Refer to the map in Figure 10.37....Ch. 10.B - Prob. 57ECh. 10.B - Prob. 58ECh. 10.B - 57-60: Acreage Problems. Refer to Figure 10.31,...Ch. 10.B - Acreage Problems. Refer to Figure 10.31, but use...Ch. 10.B - 61-64: Determining Similarity. Determine which...Ch. 10.B - Prob. 62ECh. 10.B - Prob. 63ECh. 10.B - Prob. 64ECh. 10.B - Prob. 65ECh. 10.B - Analyzing Similar Triangles. Determine the lengths...Ch. 10.B - Analyzing Similar Triangles. Determine the lengths...Ch. 10.B - Prob. 68ECh. 10.B - Solar Access. Assume that the policy given In...Ch. 10.B - Solar Access. Assume that the policy given In...Ch. 10.B - Solar Access. Assume that the policy given in...Ch. 10.B - Solar Access. Assume that the policy given in...Ch. 10.B - Prob. 73ECh. 10.B - Prob. 74ECh. 10.B - Prob. 75ECh. 10.B - Prob. 76ECh. 10.B - Prob. 77ECh. 10.B - Designing Plastic Buckets. A company manufactures...Ch. 10.B - Designing Cardboard Boxes. Suppose you are...Ch. 10.B - Designing Steel Safes. A large steel sale with a...Ch. 10.B - Blu-ray Geometry. The capacity of a single-sided,...Ch. 10.B - Prob. 82ECh. 10.B - Prob. 83ECh. 10.B - Prob. 84ECh. 10.B - Prob. 85ECh. 10.B - Prob. 86ECh. 10.B - Prob. 87ECh. 10.B - Filling a Pool. A spherical water tank has a...Ch. 10.B - Prob. 89ECh. 10.B - Prob. 90ECh. 10.B - Prob. 91ECh. 10.B - 92. Estimating Heights. In trying in estimate the...Ch. 10.B - 93. Soda Can Design. Standard soft drink cans hold...Ch. 10.B - 94. Melting Ice. A glaciers surface is...Ch. 10.B - Prob. 95ECh. 10.B - Prob. 96ECh. 10.B - Prob. 97ECh. 10.B - Prob. 98ECh. 10.B - Prob. 99ECh. 10.C - Fractal geometry is useful because it is the only...Ch. 10.C - Prob. 2QQCh. 10.C - Prob. 3QQCh. 10.C - Which of the following is a general characteristic...Ch. 10.C - How do fractal dimensions differ from in Euclidean...Ch. 10.C - 6. An island coastline has a fractal dimension...Ch. 10.C - Prob. 7QQCh. 10.C - Prob. 8QQCh. 10.C - Prob. 9QQCh. 10.C - Prob. 10QQCh. 10.C - Prob. 1ECh. 10.C - Prob. 2ECh. 10.C - Explain the meaning of the factors R and N used in...Ch. 10.C - What is the snowflake curve? Explain why we cannot...Ch. 10.C - Prob. 5ECh. 10.C - Prob. 6ECh. 10.C - Briefly describe what we mean by the process of...Ch. 10.C - 8. What is random iteration? Why do objects...Ch. 10.C - 9. I can use a yardstick to find the area of my...Ch. 10.C - I can use a yardstick to measure the length of the...Ch. 10.C - The area of the snowflake island is given by its...Ch. 10.C - Prob. 12ECh. 10.C - The edge of this leaf has a fractal dimension of...Ch. 10.C - This entire leaf, riddled with holes, has a...Ch. 10.C - Prob. 15ECh. 10.C - Prob. 16ECh. 10.C - Prob. 17ECh. 10.C - Prob. 18ECh. 10.C - Prob. 19ECh. 10.C - Prob. 20ECh. 10.C - 15-26: Ordinary and Fractal Dimensions. Find the...Ch. 10.C - 15-26: Ordinary and Fractal Dimensions. Find the...Ch. 10.C - 15-26: Ordinary and Fractal Dimensions. Find the...Ch. 10.C - Prob. 24ECh. 10.C - Prob. 25ECh. 10.C - Prob. 26ECh. 10.C - Prob. 27ECh. 10.C - Prob. 28ECh. 10.C - Prob. 29ECh. 10.C - Prob. 30ECh. 10.C - Prob. 31ECh. 10.C - Prob. 32ECh. 10.C - Prob. 33ECh. 10.C - Fractal Research. Locate at least two websites...Ch. 10.C - 35. Fractal Art. Visit a website that features...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Introduce yourself and describe a time when you used data in a personal or professional decision. This could be anything from analyzing sales data on the job to making an informed purchasing decision about a home or car. Describe to Susan how to take a sample of the student population that would not represent the population well. Describe to Susan how to take a sample of the student population that would represent the population well. Finally, describe the relationship of a sample to a population and classify your two samples as random, systematic, cluster, stratified, or convenience.arrow_forwardAnswersarrow_forwardWhat is a solution to a differential equation? We said that a differential equation is an equation that describes the derivative, or derivatives, of a function that is unknown to us. By a solution to a differential equation, we mean simply a function that satisfies this description. 2. Here is a differential equation which describes an unknown position function s(t): ds dt 318 4t+1, ds (a) To check that s(t) = 2t2 + t is a solution to this differential equation, calculate you really do get 4t +1. and check that dt' (b) Is s(t) = 2t2 +++ 4 also a solution to this differential equation? (c) Is s(t)=2t2 + 3t also a solution to this differential equation? ds 1 dt (d) To find all possible solutions, start with the differential equation = 4t + 1, then move dt to the right side of the equation by multiplying, and then integrate both sides. What do you get? (e) Does this differential equation have a unique solution, or an infinite family of solutions?arrow_forward
- these are solutions to a tutorial that was done and im a little lost. can someone please explain to me how these iterations function, for example i Do not know how each set of matrices produces a number if someine could explain how its done and provide steps it would be greatly appreciated thanks.arrow_forwardQ1) Classify the following statements as a true or false statements a. Any ring with identity is a finitely generated right R module.- b. An ideal 22 is small ideal in Z c. A nontrivial direct summand of a module cannot be large or small submodule d. The sum of a finite family of small submodules of a module M is small in M A module M 0 is called directly indecomposable if and only if 0 and M are the only direct summands of M f. A monomorphism a: M-N is said to split if and only if Ker(a) is a direct- summand in M & Z₂ contains no minimal submodules h. Qz is a finitely generated module i. Every divisible Z-module is injective j. Every free module is a projective module Q4) Give an example and explain your claim in each case a) A module M which has two composition senes 7 b) A free subset of a modale c) A free module 24 d) A module contains a direct summand submodule 7, e) A short exact sequence of modules 74.arrow_forward************* ********************************* Q.1) Classify the following statements as a true or false statements: a. If M is a module, then every proper submodule of M is contained in a maximal submodule of M. b. The sum of a finite family of small submodules of a module M is small in M. c. Zz is directly indecomposable. d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M. e. The Z-module has two composition series. Z 6Z f. Zz does not have a composition series. g. Any finitely generated module is a free module. h. If O→A MW→ 0 is short exact sequence then f is epimorphism. i. If f is a homomorphism then f-1 is also a homomorphism. Maximal C≤A if and only if is simple. Sup Q.4) Give an example and explain your claim in each case: Monomorphism not split. b) A finite free module. c) Semisimple module. d) A small submodule A of a module N and a homomorphism op: MN, but (A) is not small in M.arrow_forward
- Prove that Σ prime p≤x p=3 (mod 10) 1 Ρ = for some constant A. log log x + A+O 1 log x "arrow_forwardProve that, for x ≥ 2, d(n) n2 log x = B ― +0 X (금) n≤x where B is a constant that you should determine.arrow_forwardProve that, for x ≥ 2, > narrow_forwardI need diagram with solutionsarrow_forwardT. Determine the least common denominator and the domain for the 2x-3 10 problem: + x²+6x+8 x²+x-12 3 2x 2. Add: + Simplify and 5x+10 x²-2x-8 state the domain. 7 3. Add/Subtract: x+2 1 + x+6 2x+2 4 Simplify and state the domain. x+1 4 4. Subtract: - Simplify 3x-3 x²-3x+2 and state the domain. 1 15 3x-5 5. Add/Subtract: + 2 2x-14 x²-7x Simplify and state the domain.arrow_forwardQ.1) Classify the following statements as a true or false statements: Q a. A simple ring R is simple as a right R-module. b. Every ideal of ZZ is small ideal. very den to is lovaginz c. A nontrivial direct summand of a module cannot be large or small submodule. d. The sum of a finite family of small submodules of a module M is small in M. e. The direct product of a finite family of projective modules is projective f. The sum of a finite family of large submodules of a module M is large in M. g. Zz contains no minimal submodules. h. Qz has no minimal and no maximal submodules. i. Every divisible Z-module is injective. j. Every projective module is a free module. a homomorp cements Q.4) Give an example and explain your claim in each case: a) A module M which has a largest proper submodule, is directly indecomposable. b) A free subset of a module. c) A finite free module. d) A module contains no a direct summand. e) A short split exact sequence of modules.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Surface Area Of A Sphere | Geometry | Math | Letstute; Author: Let'stute;https://www.youtube.com/watch?v=T_DBkFnr4NM;License: Standard YouTube License, CC-BY