Physics
5th Edition
ISBN: 9781260486919
Author: GIAMBATTISTA
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10.8, Problem 10.8CP
To determine
Can expression for the physical pendulum in the limiting case, where all the mass is at the same distance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In an oscillatory motion of a simple pendulum, the ratio of the maximum angular
acceleration, e"max, to the maximum angular velocity, O'max, is 2n s^(-1). What is
the time needed for the pendulum to complete two oscillations?
A harmonic oscillator has angular frequency w and amplitudeA. (a) what are the
magnitudes of the displacement and velocity when the elastic potential energy is
equal to the kinetic energy? (Assume that Uet = 0 at equilibrium.) (b) How often
does this occur in each cycle? what is the time between occurrences? (c) At an
instant when the displacement is equal to, what fraction of the total energy of the
system is kinetic and what fraction is potential?
In an oscillatory motion of a simple
pendulum, the ratio of the maximum
angular acceleration, e"max, to the
maximum angular velocity, e'max, is
2t s^(-1). What is the time needed for
the pendulum to complete two
oscillations?
Chapter 10 Solutions
Physics
Ch. 10.2 - Prob. 10.1PPCh. 10.2 - Prob. 10.2CPCh. 10.2 - Prob. 10.2PPCh. 10.3 - Stress-strain graphs for two different materials...Ch. 10.3 - Prob. 10.3PPCh. 10.4 - Prob. 10.4PPCh. 10.4 - Prob. 10.5PPCh. 10.5 - Prob. 10.5CPCh. 10.5 - Prob. 10.6PPCh. 10.6 - Prob. 10.6CP
Ch. 10.6 - Practice Problem 10.7 Energy at Maximum...Ch. 10.7 - Prob. 10.7CPCh. 10.7 - Prob. 10.8PPCh. 10.8 - Practice Problem 10.9 Pendulum on the Moon
A...Ch. 10.8 - Prob. 10.8CPCh. 10.8 - Prob. 10.10PPCh. 10 - Prob. 1CQCh. 10 - Prob. 2CQCh. 10 - Prob. 3CQCh. 10 - Prob. 4CQCh. 10 - Prob. 5CQCh. 10 - Prob. 6CQCh. 10 - Prob. 7CQCh. 10 - Prob. 8CQCh. 10 - Prob. 9CQCh. 10 - Prob. 10CQCh. 10 - Prob. 11CQCh. 10 - Prob. 12CQCh. 10 - Prob. 13CQCh. 10 - Prob. 14CQCh. 10 - Prob. 15CQCh. 10 - Prob. 16CQCh. 10 - Prob. 17CQCh. 10 - Prob. 18CQCh. 10 - Prob. 1MCQCh. 10 - Prob. 2MCQCh. 10 - Prob. 3MCQCh. 10 - Prob. 4MCQCh. 10 - Prob. 5MCQCh. 10 - Prob. 6MCQCh. 10 - Prob. 7MCQCh. 10 - Prob. 8MCQCh. 10 - Prob. 9MCQCh. 10 - Prob. 10MCQCh. 10 - Prob. 11MCQCh. 10 - Prob. 12MCQCh. 10 - Prob. 13MCQCh. 10 - Prob. 14MCQCh. 10 - Prob. 15MCQCh. 10 - Prob. 16MCQCh. 10 - Prob. 17MCQCh. 10 - Prob. 18MCQCh. 10 - Prob. 19MCQCh. 10 - Prob. 20MCQCh. 10 - 1. A steel beam is placed vertically in the...Ch. 10 - Prob. 2PCh. 10 - 3. A man with a mass of 70 kg stands on one foot....Ch. 10 - Prob. 4PCh. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - Prob. 7PCh. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - Prob. 12PCh. 10 - Prob. 13PCh. 10 - Prob. 14PCh. 10 - Prob. 16PCh. 10 - Prob. 15PCh. 10 - 17. The leg bone (femur) breaks under a...Ch. 10 - Prob. 18PCh. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Prob. 28PCh. 10 - Prob. 29PCh. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34PCh. 10 - Prob. 35PCh. 10 - Prob. 36PCh. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - Prob. 40PCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 - Prob. 49PCh. 10 - 50. The diaphragm of a speaker has a mass of 50.0...Ch. 10 - Prob. 51PCh. 10 - Prob. 52PCh. 10 - Prob. 53PCh. 10 - Prob. 54PCh. 10 - Prob. 55PCh. 10 - Prob. 57PCh. 10 - Prob. 59PCh. 10 - 58. An object of mass 306 g is attached to the...Ch. 10 - Prob. 58PCh. 10 - Prob. 60PCh. 10 - Prob. 61PCh. 10 - An object moves in SHM. Its position as a function...Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - Prob. 66PCh. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Prob. 69PCh. 10 - Prob. 70PCh. 10 - Prob. 71PCh. 10 - 72. A grandfather clock is constructed so that it...Ch. 10 - Prob. 73PCh. 10 - Prob. 74PCh. 10 - Prob. 75PCh. 10 - Prob. 76PCh. 10 - Prob. 77PCh. 10 - Prob. 78PCh. 10 - Prob. 79PCh. 10 - Prob. 80PCh. 10 - Prob. 81PCh. 10 - Prob. 82PCh. 10 - Prob. 83PCh. 10 - Prob. 84PCh. 10 - Prob. 85PCh. 10 - Prob. 86PCh. 10 - Prob. 87PCh. 10 - Prob. 89PCh. 10 - Prob. 88PCh. 10 - Prob. 90PCh. 10 - Prob. 91PCh. 10 - Prob. 92PCh. 10 - Prob. 93PCh. 10 - Prob. 94PCh. 10 - Prob. 95PCh. 10 - Prob. 96PCh. 10 - Prob. 97PCh. 10 - Prob. 98PCh. 10 - Prob. 99PCh. 10 - 100. When the tension is 402 N, what is the...Ch. 10 - Prob. 101PCh. 10 - Prob. 105PCh. 10 - Prob. 103PCh. 10 - Prob. 102PCh. 10 - Prob. 104PCh. 10 - Prob. 106PCh. 10 - Prob. 107PCh. 10 - Prob. 108PCh. 10 - 109. The motion of a simple pendulum is...Ch. 10 - Prob. 110PCh. 10 - Prob. 111PCh. 10 - Prob. 112PCh. 10 - Prob. 113P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Refer to the problem of the two coupled oscillators discussed in Section 12.2. Show that the total energy of the system is constant. (Calculate the kinetic energy of each of the particles and the potential energy stored in each of the three springs, and sum the results.) Notice that the kinetic and potential energy terms that have 12 as a coefficient depend on C1 and 2 but not on C2 or 2. Why is such a result to be expected?arrow_forwardThe amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?arrow_forwardCheck Your Understanding Identify one way you could decrease the maximum velocity of a simple harmonic oscillator.arrow_forward
- Assume that a pendulum used to drive a grandfather clock has a length L0=1.00 m and a mass M at temperature T=20.00 °C. It can be modeled as a physical pendulum as a rod oscillating around one end. By what percentage will the period change if the temperature increases by 10°C? Assume the length of the rod changes linearly with temperature, where L=L0(1+T) and the rod is made of (=18106C1) .arrow_forwardShow that the time rate of change of mechanical energy for a damped, undriven oscillator is given by dE/dt = bv2 and hence is always negative. To do so, differentiate the expression for the mechanical energy of an oscillator, E=12mv2+12kx2, and use Equation 12.28.arrow_forwardIf the speed of the observer is increased by 5.0%, what is the period of the pendulum when measured by this observer?arrow_forward
- A simple pendulum as shown in Fig. 4.24 oscillates back and forth. Use the letter designations in the figure to identify the pendulums position(s) for the following conditions. (There may be more than one answer. Consider the pendulum to be ideal with no energy losses.) (a) Position(s) of instantaneous rest ___ (b) Position(s) of maximum velocity ___ (c) Position(s) of maximum Ek ___ (d) Position(s) of maximum Ep ___ (e) Position(s) of minimum Ek ___ (f) Position(s) of minimum Ep ___ (g) Position(s) after which Ek increases ___ (h) Position(s) after which Ep increases ___ (i) Position(s) after which Ek decreases ___ (j) Position(s) after which Ep decreases ___ Figure 4.24 The Simple Pendulum and Energyarrow_forwardA grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of the pendulum oscillation steady at 0.03 rad. What is the Q of the system?arrow_forwardConsider a damped harmonic oscillator. After four cycles the amplitude of the oscillator has dropped to 1/e of its initial value. Find the ratio of the frequency of the damped oscillator to its natural frequency.arrow_forward
- A particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forwardShow that, if a driven oscillator is only lightly damped and driven near resonance, the Q of the system is approximately Q2(TotalenergyEnergylossduringoneperiod)arrow_forwardThe temperature of the atmosphere oscillates from a maximum near noontime and a minimum near sunrise. Would you consider the atmosphere to be in stable or unstable equilibrium?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY