Physics
Physics
5th Edition
ISBN: 9781260486919
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 10, Problem 22P

(a)

To determine

The stress in the column.

(a)

Expert Solution
Check Mark

Answer to Problem 22P

The stress is 2.8×107Pa.

Explanation of Solution

The cross sectional area is 25cm2, load is 7.0×104N, Young’s modulus is 60GPa, and the compressive strength is 200MPa.

Write the equation for stress.

S=FA

Here, S is the stress, F is the applied force, and A is the area of cross section.

Conclusion:

Substitute 7.0×104N for F and 25cm2 for A in the above equation to find S.

S=7.0×104N25cm2(104m21cm2)=2.8×107N

Therefore, the stress is 2.8×107Pa.

(b)

To determine

The strain in the column.

(b)

Expert Solution
Check Mark

Answer to Problem 22P

The strain is 4.7×104.

Explanation of Solution

The cross sectional area is 25cm2, load is 7.0×104N, Young’s modulus is 60GPa, and the compressive strength is 200MPa.

Write the equation for strain.

St=FYA

Here, St is the strain and Y is the young’s modulus.

Conclusion:

Substitute 7.0×104N for F, 60GPa for Y, and 25cm2 for A in the above equation to find S.

S=7.0×104N(60GPa(109Pa1GPa))(25cm2(104m21cm2))=4.7×104N

Therefore, the strain is 4.7×104.

(c)

To determine

The elongation due to the supporting load.

(c)

Expert Solution
Check Mark

Answer to Problem 22P

The elongation is 9.3×104m.

Explanation of Solution

The height of column is 2.0m, cross sectional area is 25cm2, load is 7.0×104N, Young’s modulus is 60GPa, and the compressive strength is 200MPa.

Write the equation to find the elongation due to the supporting load.

ΔL=FLYA

Conclusion:

Substitute 7.0×104N for F, 2.0m for L, 60GPa for Y, and 25cm2 for A in the above equation to find ΔL.

ΔL=(7.0×104N)(2.0m)(60GPa(109Pa1GPa))(25cm2(104m21cm2))=9.3×104m

Therefore, the strain is 9.37×104m.

(d)

To determine

The maximum weight that can be supported by the load.

(d)

Expert Solution
Check Mark

Answer to Problem 22P

The maximum load is 5.0×105N.

Explanation of Solution

The height of column is 2.0m, cross sectional area is 25cm2, load is 7.0×104N, Young’s modulus is 60GPa, and the compressive strength is 200MPa.

When the column supports the maximum possible weight, the compressive stress will be equal to the stress.

Write the equation for the maximum weight that can be supported by the load.

Wmax=ScomA

Here, Wmax is the maximum weight and Scom is the compressive strength.

Conclusion:

Substitute 200MPa for Scom and 25cm2 for A in the above equation to find Wmax.

Wmax=(200MPa(106Pa1MPa))(25cm2(104m21cm2))=5.0×105N

Therefore, the maximum load is 5.0×105N.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote
No chatgpt pls will upvote
No chatgpt pls will upvote

Chapter 10 Solutions

Physics

Ch. 10.6 - Practice Problem 10.7 Energy at Maximum...Ch. 10.7 - Prob. 10.7CPCh. 10.7 - Prob. 10.8PPCh. 10.8 - Practice Problem 10.9 Pendulum on the Moon A...Ch. 10.8 - Prob. 10.8CPCh. 10.8 - Prob. 10.10PPCh. 10 - Prob. 1CQCh. 10 - Prob. 2CQCh. 10 - Prob. 3CQCh. 10 - Prob. 4CQCh. 10 - Prob. 5CQCh. 10 - Prob. 6CQCh. 10 - Prob. 7CQCh. 10 - Prob. 8CQCh. 10 - Prob. 9CQCh. 10 - Prob. 10CQCh. 10 - Prob. 11CQCh. 10 - Prob. 12CQCh. 10 - Prob. 13CQCh. 10 - Prob. 14CQCh. 10 - Prob. 15CQCh. 10 - Prob. 16CQCh. 10 - Prob. 17CQCh. 10 - Prob. 18CQCh. 10 - Prob. 1MCQCh. 10 - Prob. 2MCQCh. 10 - Prob. 3MCQCh. 10 - Prob. 4MCQCh. 10 - Prob. 5MCQCh. 10 - Prob. 6MCQCh. 10 - Prob. 7MCQCh. 10 - Prob. 8MCQCh. 10 - Prob. 9MCQCh. 10 - Prob. 10MCQCh. 10 - Prob. 11MCQCh. 10 - Prob. 12MCQCh. 10 - Prob. 13MCQCh. 10 - Prob. 14MCQCh. 10 - Prob. 15MCQCh. 10 - Prob. 16MCQCh. 10 - Prob. 17MCQCh. 10 - Prob. 18MCQCh. 10 - Prob. 19MCQCh. 10 - Prob. 20MCQCh. 10 - 1. A steel beam is placed vertically in the...Ch. 10 - Prob. 2PCh. 10 - 3. A man with a mass of 70 kg stands on one foot....Ch. 10 - Prob. 4PCh. 10 - Prob. 5PCh. 10 - Prob. 6PCh. 10 - Prob. 7PCh. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - Prob. 12PCh. 10 - Prob. 13PCh. 10 - Prob. 14PCh. 10 - Prob. 16PCh. 10 - Prob. 15PCh. 10 - 17. The leg bone (femur) breaks under a...Ch. 10 - Prob. 18PCh. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Prob. 28PCh. 10 - Prob. 29PCh. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34PCh. 10 - Prob. 35PCh. 10 - Prob. 36PCh. 10 - Prob. 37PCh. 10 - Prob. 38PCh. 10 - Prob. 39PCh. 10 - Prob. 40PCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 - Prob. 49PCh. 10 - 50. The diaphragm of a speaker has a mass of 50.0...Ch. 10 - Prob. 51PCh. 10 - Prob. 52PCh. 10 - Prob. 53PCh. 10 - Prob. 54PCh. 10 - Prob. 55PCh. 10 - Prob. 57PCh. 10 - Prob. 59PCh. 10 - 58. An object of mass 306 g is attached to the...Ch. 10 - Prob. 58PCh. 10 - Prob. 60PCh. 10 - Prob. 61PCh. 10 - An object moves in SHM. Its position as a function...Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - Prob. 66PCh. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Prob. 69PCh. 10 - Prob. 70PCh. 10 - Prob. 71PCh. 10 - 72. A grandfather clock is constructed so that it...Ch. 10 - Prob. 73PCh. 10 - Prob. 74PCh. 10 - Prob. 75PCh. 10 - Prob. 76PCh. 10 - Prob. 77PCh. 10 - Prob. 78PCh. 10 - Prob. 79PCh. 10 - Prob. 80PCh. 10 - Prob. 81PCh. 10 - Prob. 82PCh. 10 - Prob. 83PCh. 10 - Prob. 84PCh. 10 - Prob. 85PCh. 10 - Prob. 86PCh. 10 - Prob. 87PCh. 10 - Prob. 89PCh. 10 - Prob. 88PCh. 10 - Prob. 90PCh. 10 - Prob. 91PCh. 10 - Prob. 92PCh. 10 - Prob. 93PCh. 10 - Prob. 94PCh. 10 - Prob. 95PCh. 10 - Prob. 96PCh. 10 - Prob. 97PCh. 10 - Prob. 98PCh. 10 - Prob. 99PCh. 10 - 100. When the tension is 402 N, what is the...Ch. 10 - Prob. 101PCh. 10 - Prob. 105PCh. 10 - Prob. 103PCh. 10 - Prob. 102PCh. 10 - Prob. 104PCh. 10 - Prob. 106PCh. 10 - Prob. 107PCh. 10 - Prob. 108PCh. 10 - 109. The motion of a simple pendulum is...Ch. 10 - Prob. 110PCh. 10 - Prob. 111PCh. 10 - Prob. 112PCh. 10 - Prob. 113P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY