![Physics](https://www.bartleby.com/isbn_cover_images/9781260486919/9781260486919_largeCoverImage.gif)
Concept explainers
(a)
A plot of the elastic potential energy versus time.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 61P
The elastic potential energy is a sinusoidal curve with amplitude
Explanation of Solution
The mass of the object is
Write the expression for elastic potential energy
Here,
Write the given expression for position as a function of time.
Here,
Substitute (II) in (I)
Write the expression for spring constant
Here,
Write the expression for angular frequency
Here,
Substitute
Substitute
Substitute
The time period of the square of a sine curve is half of the time period of the sine curve.
Write the expression for time period of the potential energy
Here,
Substitute
Use the above obtained expression for
(b)
A plot of the kinetic energy versus time.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 61P
The kinetic energy curve is a cosine curve with amplitude
Explanation of Solution
Write the expression for kinetic energy
Here,
Differentiate (I) to find
Square (VIII) and substitute in (VII)
Substitute
The time period of the square of a cosine curve is half of the time period of the cosine curve.
Write the expression for time period of the potential energy
Here,
Equation (VI) and (X) are the same and hence
Use the above obtained expression for
(c)
A plot of the total energy versus time.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 61P
The total energy curve is a straight line parallel to the time-axis with a y-intercept of
Explanation of Solution
Write the expression for total energy
Here,
Substitute the obtained expression of
Thus, energy is constant and hence it is a straight line parallel to the time axis. (Refer figure 3)
(d)
The effect of a friction on the above results.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 61P
All three energies of the spring approaches zero.
Explanation of Solution
When the frictional forces are included, the system is no more conservative and it is called a non-conservative system. The energy of the system is not conserved.
If the horizontal surface is not considered as frictionless, then the surface resists the oscillatory motion of the spring and thereby reducing its kinetic energy. A part of the kinetic energy is lost in the form of heat and consequently the all three energy of the system reduces to zero.
Want to see more full solutions like this?
Chapter 10 Solutions
Physics
- 3arrow_forward13. After a gust of wind, an orb weaver spider with a mass of 35 g, hanging on a strand of web of length L = .420 m, undergoes simple harmonic motion (SHO) with an amplitude A and period T. If the spider climbs 12.0 cm up the web without perturbing the oscillation otherwise, what is the period of oscillation, in Hz to three significant figures?arrow_forward15. An object of mass m = 8.10 kg is attached to an ideal spring and allowed to hang in the earth's gravitational field. The spring stretches 23.10 cm before it reaches its equilibrium position. The mass then undergoes simple harmonic motion with an amplitude of 10.5 cm. Calculate the velocity of the mass in m/s at a time t= 1.00s to three significant figures.arrow_forward
- please solve and answer the question correctly. Thank you!!arrow_forward18arrow_forward1. Some 1800 years ago Roman soldiers effectively used slings as deadly weapons. The length of these slings averaged about 81 cm and the lead shot that they used weighed about 30 grams. If in the wind up to a release, the shot rotated around the Roman slinger with a period of .14 seconds. Find the maximum acceleration of the shot before being released in m/s^2 and report it to two significant figures.arrow_forward
- 16arrow_forward11. A small charged plastic ball is vertically above another charged small ball in a frictionless test tube as shown in the figure. The balls are in equilibrium at a distance d= 2.0 cm apart. If the charge on one ball is tripled, find the new equilibrium distance between the balls in cm and report it to the proper number of significant figures.arrow_forward12. The electric field at a point 1.3 cm from a small object points toward the object with a strength of 180,000 N/C. Find the object's charge q, in nC to the proper number of significant figures. k = 1/4πε0 = 8.99 × 10^9 N ∙ m^2/C^2arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)