A binomial experiment consists of 500 trials. The probability of success for each trial is .4 . What is the probability of obtaining the number of successes indicated in Problems 51-58? Approximate these probabilities to two decimal places using a normal curve. (This binomial experiment easily passes the rule-of-thumb test, as you can check. When computing the probabilities, adjust the intervals as in Examples 3 and 4.) 188 or more
A binomial experiment consists of 500 trials. The probability of success for each trial is .4 . What is the probability of obtaining the number of successes indicated in Problems 51-58? Approximate these probabilities to two decimal places using a normal curve. (This binomial experiment easily passes the rule-of-thumb test, as you can check. When computing the probabilities, adjust the intervals as in Examples 3 and 4.) 188 or more
Solution Summary: The author calculates the probability of obtaining 188 or less successes in a binomial experiment consisting of 500 trials.
A binomial experiment consists of
500
trials. The probability of success for each trial is
.4
. What is the probability of obtaining the number of successes indicated in Problems 51-58? Approximate these probabilities to two decimal places using a normal curve. (This binomial experiment easily passes the rule-of-thumb test, as you can check. When computing the probabilities, adjust the intervals as in Examples 3 and 4.)
1.3. The dots of Output 2 lie in pairs. Why? What property of esin(x) gives rise to
this behavior?
1.6. By manipulating Taylor series, determine the constant C for an error expansion
of (1.3) of the form wj−u' (xj) ~ Ch¼u (5) (x;), where u (5) denotes the fifth derivative.
Based on this value of C and on the formula for u(5) (x) with u(x) = esin(x), determine
the leading term in the expansion for w; - u'(x;) for u(x) = esin(x). (You will have
to find maxε[-T,T] |u(5) (x)| numerically.) Modify Program 1 so that it plots the
dashed line corresponding to this leading term rather than just N-4. This adjusted
dashed line should fit the data almost perfectly. Plot the difference between the two
on a log-log scale and verify that it shrinks at the rate O(h6).
4. Evaluate the following integrals. Show your work.
a)
-x
b) f₁²x²/2 + x² dx
c) fe³xdx
d) [2 cos(5x) dx
e) √
35x6
3+5x7
dx
3
g) reve
√ dt
h) fx (x-5) 10 dx
dt
1+12
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License