(a)
Show whether the infinite series converges.
(a)
Answer to Problem 54E
The infinite series diverges by the Limit Comparison Test.
Explanation of Solution
Given information:
To use with Limit Comparison Test, find a series
Thus,
Then
Apply the limit comparison test:
Since the limit is a constant,
But
We have
Series
Then
Therefore,
By Limit Comparison Test, the infinite series diverges.
(b)
Explain whether the infinite series converges.
(b)
Answer to Problem 54E
The infinite series diverges.
Explanation of Solution
Given information:
We have
Use nth − term test:
Since k approaches infinity, we will take the limit of the original series.
Then simplify:
The series does not approach zero.
Therefore,
The infinite series diverges.
(c)
Discuss whether the infinite series converges.
(c)
Answer to Problem 54E
The infinite series absolutely converges by the Direct Comparison Test.
Explanation of Solution
Given information:
To use with Limit Comparison Test, find a series
Thus,
Since
Consider the absolute value of the terms:
Now,
Perform the Direct Comparison Test:
Compare the numerators and denominators.
Smaller numerator divided by larger denominators equals the smaller number.
Since
Then
According to the definition of Absolute Convergence,
(d)
Decide whether the infinite series converges.
(d)
Answer to Problem 54E
The infinite series diverges by the Integral Test.
Explanation of Solution
Given information:
We have
Use the Integral Test:
Take the anti-derivative:
Solve the integral:
The integral comes to infinity.
Therefore,
The series diverges by the Integral Test.
Chapter 10 Solutions
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Additional Math Textbook Solutions
A First Course in Probability (10th Edition)
Thinking Mathematically (6th Edition)
Elementary Statistics
Elementary Statistics: Picturing the World (7th Edition)
University Calculus: Early Transcendentals (4th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
- 2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below.arrow_forwardwrite it down for better understanding pleasearrow_forward1. Suppose F(t) gives the temperature in degrees Fahrenheit t minutes after 1pm. With a complete sentence, interpret the equation F(10) 68. (Remember this means explaining the meaning of the equation without using any mathy vocabulary!) Include units. (3 points) =arrow_forward
- 2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below. a. Evaluate f(-3). If you have multiple steps, be sure to connect your expressions with EQUALS SIGNS. (3 points)arrow_forward4c Consider the function f(x) = 10x + 4x5 - 4x³- 1. Enter the general antiderivative of f(x)arrow_forwardA tank contains 60 kg of salt and 2000 L of water. Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 11 L/min. Let y be the number of kg of salt in the tank after t minutes. The differential equation for this situation would be: dy dt y(0) =arrow_forward
- • • Let > be a potential for the vector field F = (−2 y³, −6 xy² − 4 z³, −12 yz² + 4 2). Then the value of sin((-1.63, 2.06, 0.57) – (0,0,0)) is - 0.336 -0.931 -0.587 0.440 0.902 0.607 -0.609 0.146arrow_forwardThe value of cos(4M) where M is the magnitude of the vector field with potential ƒ = e² sin(лy) cos(π²) at x = 1, y = 1/4, z = 1/3 is 0.602 -0.323 0.712 -0.816 0.781 0.102 0.075 0.013arrow_forwardThere is exactly number a and one number b such that the vector field F = conservative. For those values of a and b, the value of cos(a) + sin(b) is (3ay + z, 3ayz + 3x, −by² + x) is -0.961 -0.772 -1.645 0.057 -0.961 1.764 -0.457 0.201arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning