Concept explainers
(a)
The expected pay off of an infinite series.
(a)
Answer to Problem 67RE
The value of
Explanation of Solution
Given information:
Toss a fair coin which the heads and tails are equally likely. When it comes up head on winning the dollar hence the game is over as soon as it comes up for the tails.
Formula used:
The Probability of occurring the tail in first chance,
Calculation:
Let the event when head appear be H and when tail appears being T.
Probability of occurring the tail in first chance,
Similarly,
Payoff when tail occur in first time
Payoff when tail occur in second time
Therefore,
Conclusion:
The value of
(b)
The value of the series
(b)
Answer to Problem 67RE
The value is
Explanation of Solution
Given:
The series is
Formula used:
Maclaurin series is used.
Calculation:
Maclaurin series generated by function
Differentiating the above expression
Therefore,
Conclusion:
The value is
(c)
The value of the series
(c)
Answer to Problem 67RE
The value is
Explanation of Solution
Given information:
The series is
Formula used:
Multiplication is used.
Calculation:
Multiplying the above series by
Therefore,
Conclusion:
The value is
(d)
The expected payoff of the game.
(d)
Answer to Problem 67RE
The expected payoff is $1
Explanation of Solution
Given information:
The series is
Formula used:
Division is done.
Calculation:
If
Since,
Therefore expected payoff is $1
Conclusion:
The expected payoff is $1
Chapter 10 Solutions
Calculus 2012 Student Edition (by Finney/Demana/Waits/Kennedy)
Additional Math Textbook Solutions
Elementary Statistics
A First Course in Probability (10th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Elementary Statistics: Picturing the World (7th Edition)
- 2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below.arrow_forwardwrite it down for better understanding pleasearrow_forward1. Suppose F(t) gives the temperature in degrees Fahrenheit t minutes after 1pm. With a complete sentence, interpret the equation F(10) 68. (Remember this means explaining the meaning of the equation without using any mathy vocabulary!) Include units. (3 points) =arrow_forward
- 2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below. a. Evaluate f(-3). If you have multiple steps, be sure to connect your expressions with EQUALS SIGNS. (3 points)arrow_forward4c Consider the function f(x) = 10x + 4x5 - 4x³- 1. Enter the general antiderivative of f(x)arrow_forwardA tank contains 60 kg of salt and 2000 L of water. Pure water enters a tank at the rate 8 L/min. The solution is mixed and drains from the tank at the rate 11 L/min. Let y be the number of kg of salt in the tank after t minutes. The differential equation for this situation would be: dy dt y(0) =arrow_forward
- • • Let > be a potential for the vector field F = (−2 y³, −6 xy² − 4 z³, −12 yz² + 4 2). Then the value of sin((-1.63, 2.06, 0.57) – (0,0,0)) is - 0.336 -0.931 -0.587 0.440 0.902 0.607 -0.609 0.146arrow_forwardThe value of cos(4M) where M is the magnitude of the vector field with potential ƒ = e² sin(лy) cos(π²) at x = 1, y = 1/4, z = 1/3 is 0.602 -0.323 0.712 -0.816 0.781 0.102 0.075 0.013arrow_forwardThere is exactly number a and one number b such that the vector field F = conservative. For those values of a and b, the value of cos(a) + sin(b) is (3ay + z, 3ayz + 3x, −by² + x) is -0.961 -0.772 -1.645 0.057 -0.961 1.764 -0.457 0.201arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning