
Discrete Mathematics with Graph Theory (Classic Version) (3rd Edition) (Pearson Modern Classics for Advanced Mathematics Series)
3rd Edition
ISBN: 9780134689555
Author: Edgar Goodaire, Michael Parmenter
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 10.4, Problem 22E
To determine
To prove: Floyd-Warshall algorithm requires
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Problem 11 (a) A tank is discharging water through an orifice at a depth of T
meter below the surface of the water whose area is A m². The
following are the values of a for the corresponding values of A:
A 1.257 1.390
x 1.50 1.65
1.520 1.650 1.809 1.962 2.123 2.295 2.462|2.650
1.80 1.95 2.10 2.25 2.40 2.55 2.70
2.85
Using the formula
-3.0
(0.018)T =
dx.
calculate T, the time in seconds for the level of the water to drop
from 3.0 m to 1.5 m above the orifice.
(b) The velocity of a train which starts from rest is given by the fol-
lowing table, the time being reckoned in minutes from the start
and the speed in km/hour:
| † (minutes) |2|4 6 8 10 12
14 16 18 20
v (km/hr) 16 28.8 40 46.4 51.2 32.0 17.6 8 3.2 0
Estimate approximately the total distance ran in 20 minutes.
-
Let n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p − 1)/2
multiple of n, i.e.
n mod p, 2n mod p, ...,
p-1
2
-n mod p.
Let T be the subset of S consisting of those residues which exceed p/2.
Find the set T, and hence compute the Legendre symbol (7|23).
23
32
how come?
The first 11 multiples of 7 reduced mod 23 are
7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8.
The set T is the subset of these residues exceeding
So T = {12, 14, 17, 19, 21}.
By Gauss' lemma (Apostol Theorem 9.6),
(7|23) = (−1)|T| = (−1)5 = −1.
Let n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p-1)/2
multiple of n, i.e.
n mod p, 2n mod p, ...,
2
p-1
-n mod p.
Let T be the subset of S consisting of those residues which exceed p/2.
Find the set T, and hence compute the Legendre symbol (7|23).
The first 11 multiples of 7 reduced mod 23 are
7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8.
23
The set T is the subset of these residues exceeding
2°
So T = {12, 14, 17, 19, 21}.
By Gauss' lemma (Apostol Theorem 9.6),
(7|23) = (−1)|T| = (−1)5 = −1.
how come?
Chapter 10 Solutions
Discrete Mathematics with Graph Theory (Classic Version) (3rd Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Ch. 10.1 - Prob. 1TFQCh. 10.1 - A path is a walk in which all vertices are...Ch. 10.1 - 3. A trail is a path
Ch. 10.1 - A path is trail.Ch. 10.1 - A cycle is a special type of circuit.Ch. 10.1 - 6. A cycle is a circuit with no repeated edges
Ch. 10.1 - 7. An Eulerian circuit is a cycle.
Ch. 10.1 - Prob. 8TFQCh. 10.1 - A sub graph of a connected graph must be...Ch. 10.1 - Prob. 10TFQ
Ch. 10.1 - K8,10 is Eulerian.Ch. 10.1 - Prob. 12TFQCh. 10.1 - 13. A graph with more than one component cannot be...Ch. 10.1 - Prob. 1ECh. 10.1 - [BB] Answer the Konigsberg bridge Problem and...Ch. 10.1 - Prob. 3ECh. 10.1 - Prob. 4ECh. 10.1 - Prob. 5ECh. 10.1 - 6. Suppose we modify the definition of Eulerian...Ch. 10.1 - 7. (a) Is there an Eulerian trail from A to B in...Ch. 10.1 - [BB] (Fictitious) A recently discovered map of the...Ch. 10.1 - 9. Euler’s original article about the Konigsberg...Ch. 10.1 - Prob. 10ECh. 10.1 - Prob. 11ECh. 10.1 - [BB] For which values of n1 , if any, is Kn...Ch. 10.1 - 13. (a) Find a necessary and sufficient condition...Ch. 10.1 - Prob. 14ECh. 10.1 - 15.[BB] Prove that any circuit in the graph must...Ch. 10.1 - Prob. 16ECh. 10.1 - Prob. 17ECh. 10.1 - Prob. 18ECh. 10.1 - Prob. 19ECh. 10.1 - Prob. 20ECh. 10.1 - Prob. 21ECh. 10.1 - Prob. 22ECh. 10.1 - Prob. 23ECh. 10.1 - Prob. 24ECh. 10.1 - 25. Prove that a graph is bipartite if and only if...Ch. 10.1 - Prob. 26ECh. 10.1 - Prob. 27ECh. 10.2 - A Hamiltonian cycle is a circuit.
Ch. 10.2 - Prob. 2TFQCh. 10.2 - Prob. 3TFQCh. 10.2 - Prob. 4TFQCh. 10.2 - Prob. 5TFQCh. 10.2 - A graph that contains a proper cycle cannot be...Ch. 10.2 - Prob. 7TFQCh. 10.2 - Prob. 8TFQCh. 10.2 - Prob. 9TFQCh. 10.2 - Prob. 10TFQCh. 10.2 - Prob. 1ECh. 10.2 - 2. Determine whether or not each of the graphs of...Ch. 10.2 - Determine whether each of the graph shown is...Ch. 10.2 - Prob. 4ECh. 10.2 - Consider the graph shown. Is it Hamiltonian? Is...Ch. 10.2 - Prob. 6ECh. 10.2 - Prob. 7ECh. 10.2 - Does the graph have a Hamiltonian cycle that...Ch. 10.2 - Prob. 9ECh. 10.2 - Prob. 10ECh. 10.2 - How many edges must a Hamiltonian cycle is kn...Ch. 10.2 - 12. Draw a picture of a cube, by imagining that...Ch. 10.2 - Prob. 13ECh. 10.2 - Prob. 14ECh. 10.2 - Prob. 15ECh. 10.2 - Prob. 16ECh. 10.2 - Suppose G is a graph with n3 vertices and at least...Ch. 10.2 - 18.[BB] Suppose G is a graph with vertices such...Ch. 10.2 - Prob. 19ECh. 10.2 - Prob. 20ECh. 10.2 - Answer true of false and in each case either given...Ch. 10.2 - Prob. 22ECh. 10.2 - Prob. 23ECh. 10.2 - Find a necessary and sufficient condition on m and...Ch. 10.3 - Prob. 1TFQCh. 10.3 - Prob. 2TFQCh. 10.3 - Prob. 3TFQCh. 10.3 - Prob. 4TFQCh. 10.3 - Prob. 5TFQCh. 10.3 - Prob. 6TFQCh. 10.3 - Prob. 7TFQCh. 10.3 - Prob. 8TFQCh. 10.3 - Prob. 9TFQCh. 10.3 - Prob. 10TFQCh. 10.3 - Prob. 1ECh. 10.3 - Prob. 2ECh. 10.3 - Prob. 3ECh. 10.3 - Prob. 4ECh. 10.3 - Prob. 5ECh. 10.3 - Prob. 6ECh. 10.3 - Prob. 7ECh. 10.3 - 8. (a) [BB] Find the adjacency matrices and of...Ch. 10.3 - 9. Repeat Exercise 8 for the graphs and shown....Ch. 10.3 - Prob. 10ECh. 10.3 - Let A=[abcpqrxyz] and let P=[010001100]. Thus P is...Ch. 10.3 - Prob. 12ECh. 10.3 - 13. For each pair of matrices shown, decide...Ch. 10.3 - 14. [BB] Let A be the adjacency matrix of a...Ch. 10.3 - Prob. 15ECh. 10.3 - Prob. 16ECh. 10.3 - Prob. 17ECh. 10.3 - Prob. 18ECh. 10.4 - Prob. 1TFQCh. 10.4 - Prob. 2TFQCh. 10.4 - It is an open question as to whether there exists...Ch. 10.4 - Prob. 4TFQCh. 10.4 - Prob. 5TFQCh. 10.4 - Prob. 6TFQCh. 10.4 - Prob. 7TFQCh. 10.4 - Prob. 8TFQCh. 10.4 - Prob. 9TFQCh. 10.4 - Prob. 10TFQCh. 10.4 - Prob. 1ECh. 10.4 - Prob. 2ECh. 10.4 - Prob. 3ECh. 10.4 - Prob. 4ECh. 10.4 - Prob. 5ECh. 10.4 - Prob. 6ECh. 10.4 - Prob. 7ECh. 10.4 - Prob. 8ECh. 10.4 - Prob. 9ECh. 10.4 - Prob. 10ECh. 10.4 - Prob. 11ECh. 10.4 - 12. [BB] Could Dijkstra’s algorithm (original...Ch. 10.4 - Prob. 13ECh. 10.4 - 14. (a) If weights were assigned to the edges of...Ch. 10.4 - Prob. 15ECh. 10.4 - Prob. 16ECh. 10.4 - Prob. 17ECh. 10.4 - Prob. 18ECh. 10.4 - Prob. 19ECh. 10.4 - Prob. 20ECh. 10.4 - Prob. 21ECh. 10.4 - Prob. 22ECh. 10.4 - Prob. 23ECh. 10.4 - Prob. 24ECh. 10 - In the Konigsberg Bringe Problem (see fig. 9.1),...Ch. 10 - Prob. 2RECh. 10 - Suppose G1 and G2 are graphs with no vertices in...Ch. 10 - Prob. 4RECh. 10 - Prob. 5RECh. 10 - Is the graph Hamiltonian? Is it Eulerian? Explain...Ch. 10 - Determine, with reason, whether each of the...Ch. 10 - Prob. 8RECh. 10 - Prob. 9RECh. 10 - Prob. 10RECh. 10 - Prob. 11RECh. 10 - Prob. 12RECh. 10 - Prob. 13RECh. 10 - Prob. 14RECh. 10 - 15. A connected graph G has 10 vertices and 41...Ch. 10 - Prob. 16RECh. 10 - Let v1,v2,........v8 and w1,w2,..........w12 be...Ch. 10 - Prob. 18RECh. 10 - Martha claims that a graph with adjacency...Ch. 10 - Prob. 20RECh. 10 - Which of the following three matrices (if any) is...Ch. 10 - Apply the first form of Dijkstras algorithm to the...Ch. 10 - Prob. 23RECh. 10 - 24. Apply the original form of Dijkstra’s...Ch. 10 - Apply the improved version of Dijkstras algorithm...Ch. 10 - Prob. 26RECh. 10 - 27. Apply the Floyd- Warshall algorithm apply to...Ch. 10 - Prob. 28RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Shading a Venn diagram with 3 sets: Unions, intersections, and... The Venn diagram shows sets A, B, C, and the universal set U. Shade (CUA)' n B on the Venn diagram. U Explanation Check A- B Q Search 田arrow_forward3. A different 7-Eleven has a bank of slurpee fountain heads. Their available flavors are as follows: Mountain Dew, Mountain Dew Code Red, Grape, Pepsi and Mountain Dew Livewire. You fill five different cups full with each type of flavor. How many different ways can you arrange the cups in a line if exactly two Mountain Dew flavors are next to each other? 3.2.1arrow_forwardBusinessarrow_forward
- Please explain how come of X2(n).arrow_forwardNo chatgpt pls will upvotearrow_forwardFind all solutions of the polynomial congruence x²+4x+1 = 0 (mod 143). (The solutions of the congruence x² + 4x+1=0 (mod 11) are x = 3,4 (mod 11) and the solutions of the congruence x² +4x+1 = 0 (mod 13) are x = 2,7 (mod 13).)arrow_forward
- https://www.hawkeslearning.com/Statistics/dbs2/datasets.htmlarrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.The notation Z_(n) refers to the set {0,1,2,...,n-1}. For example, Z_(4)={0,1,2,3}. f: Z_(6) -> Z_(6) defined by f(x)=x^(2)+4(mod6). g: Z_(5) -> Z_(5) defined by g(x)=x^(2)-11(mod5). h: Z*Z -> Z defined by h(x,y)=x+2y. j: R-{3} -> R defined by j(x)=(4x)/(x-3).arrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Graph Theory: Euler Paths and Euler Circuits; Author: Mathispower4u;https://www.youtube.com/watch?v=5M-m62qTR-s;License: Standard YouTube License, CC-BY
WALK,TRIAL,CIRCUIT,PATH,CYCLE IN GRAPH THEORY; Author: DIVVELA SRINIVASA RAO;https://www.youtube.com/watch?v=iYVltZtnAik;License: Standard YouTube License, CC-BY