Discrete Mathematics with Graph Theory (Classic Version) (3rd Edition) (Pearson Modern Classics for Advanced Mathematics Series)
3rd Edition
ISBN: 9780134689555
Author: Edgar Goodaire, Michael Parmenter
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 10.4, Problem 8E
To determine
The shortest path from A to T in the graph and the final labels on all vertices by applying improved version of Dijkstra’s algorithm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the shortest path algorithm
to find a shortest st-path in
the following graph. The number on each edge indicates its length.
Find the shortest path from vertex 'S' to 'T’ by Dijkstra's algorithm for the weighted graph:
3
3
d
1
4
List each vertex using the transverse algorithm pre-order, post-order and in-order
Chapter 10 Solutions
Discrete Mathematics with Graph Theory (Classic Version) (3rd Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Ch. 10.1 - Prob. 1TFQCh. 10.1 - A path is a walk in which all vertices are...Ch. 10.1 - 3. A trail is a path
Ch. 10.1 - A path is trail.Ch. 10.1 - A cycle is a special type of circuit.Ch. 10.1 - 6. A cycle is a circuit with no repeated edges
Ch. 10.1 - 7. An Eulerian circuit is a cycle.
Ch. 10.1 - Prob. 8TFQCh. 10.1 - A sub graph of a connected graph must be...Ch. 10.1 - Prob. 10TFQ
Ch. 10.1 - K8,10 is Eulerian.Ch. 10.1 - Prob. 12TFQCh. 10.1 - 13. A graph with more than one component cannot be...Ch. 10.1 - Prob. 1ECh. 10.1 - [BB] Answer the Konigsberg bridge Problem and...Ch. 10.1 - Prob. 3ECh. 10.1 - Prob. 4ECh. 10.1 - Prob. 5ECh. 10.1 - 6. Suppose we modify the definition of Eulerian...Ch. 10.1 - 7. (a) Is there an Eulerian trail from A to B in...Ch. 10.1 - [BB] (Fictitious) A recently discovered map of the...Ch. 10.1 - 9. Euler’s original article about the Konigsberg...Ch. 10.1 - Prob. 10ECh. 10.1 - Prob. 11ECh. 10.1 - [BB] For which values of n1 , if any, is Kn...Ch. 10.1 - 13. (a) Find a necessary and sufficient condition...Ch. 10.1 - Prob. 14ECh. 10.1 - 15.[BB] Prove that any circuit in the graph must...Ch. 10.1 - Prob. 16ECh. 10.1 - Prob. 17ECh. 10.1 - Prob. 18ECh. 10.1 - Prob. 19ECh. 10.1 - Prob. 20ECh. 10.1 - Prob. 21ECh. 10.1 - Prob. 22ECh. 10.1 - Prob. 23ECh. 10.1 - Prob. 24ECh. 10.1 - 25. Prove that a graph is bipartite if and only if...Ch. 10.1 - Prob. 26ECh. 10.1 - Prob. 27ECh. 10.2 - A Hamiltonian cycle is a circuit.
Ch. 10.2 - Prob. 2TFQCh. 10.2 - Prob. 3TFQCh. 10.2 - Prob. 4TFQCh. 10.2 - Prob. 5TFQCh. 10.2 - A graph that contains a proper cycle cannot be...Ch. 10.2 - Prob. 7TFQCh. 10.2 - Prob. 8TFQCh. 10.2 - Prob. 9TFQCh. 10.2 - Prob. 10TFQCh. 10.2 - Prob. 1ECh. 10.2 - 2. Determine whether or not each of the graphs of...Ch. 10.2 - Determine whether each of the graph shown is...Ch. 10.2 - Prob. 4ECh. 10.2 - Consider the graph shown. Is it Hamiltonian? Is...Ch. 10.2 - Prob. 6ECh. 10.2 - Prob. 7ECh. 10.2 - Does the graph have a Hamiltonian cycle that...Ch. 10.2 - Prob. 9ECh. 10.2 - Prob. 10ECh. 10.2 - How many edges must a Hamiltonian cycle is kn...Ch. 10.2 - 12. Draw a picture of a cube, by imagining that...Ch. 10.2 - Prob. 13ECh. 10.2 - Prob. 14ECh. 10.2 - Prob. 15ECh. 10.2 - Prob. 16ECh. 10.2 - Suppose G is a graph with n3 vertices and at least...Ch. 10.2 - 18.[BB] Suppose G is a graph with vertices such...Ch. 10.2 - Prob. 19ECh. 10.2 - Prob. 20ECh. 10.2 - Answer true of false and in each case either given...Ch. 10.2 - Prob. 22ECh. 10.2 - Prob. 23ECh. 10.2 - Find a necessary and sufficient condition on m and...Ch. 10.3 - Prob. 1TFQCh. 10.3 - Prob. 2TFQCh. 10.3 - Prob. 3TFQCh. 10.3 - Prob. 4TFQCh. 10.3 - Prob. 5TFQCh. 10.3 - Prob. 6TFQCh. 10.3 - Prob. 7TFQCh. 10.3 - Prob. 8TFQCh. 10.3 - Prob. 9TFQCh. 10.3 - Prob. 10TFQCh. 10.3 - Prob. 1ECh. 10.3 - Prob. 2ECh. 10.3 - Prob. 3ECh. 10.3 - Prob. 4ECh. 10.3 - Prob. 5ECh. 10.3 - Prob. 6ECh. 10.3 - Prob. 7ECh. 10.3 - 8. (a) [BB] Find the adjacency matrices and of...Ch. 10.3 - 9. Repeat Exercise 8 for the graphs and shown....Ch. 10.3 - Prob. 10ECh. 10.3 - Let A=[abcpqrxyz] and let P=[010001100]. Thus P is...Ch. 10.3 - Prob. 12ECh. 10.3 - 13. For each pair of matrices shown, decide...Ch. 10.3 - 14. [BB] Let A be the adjacency matrix of a...Ch. 10.3 - Prob. 15ECh. 10.3 - Prob. 16ECh. 10.3 - Prob. 17ECh. 10.3 - Prob. 18ECh. 10.4 - Prob. 1TFQCh. 10.4 - Prob. 2TFQCh. 10.4 - It is an open question as to whether there exists...Ch. 10.4 - Prob. 4TFQCh. 10.4 - Prob. 5TFQCh. 10.4 - Prob. 6TFQCh. 10.4 - Prob. 7TFQCh. 10.4 - Prob. 8TFQCh. 10.4 - Prob. 9TFQCh. 10.4 - Prob. 10TFQCh. 10.4 - Prob. 1ECh. 10.4 - Prob. 2ECh. 10.4 - Prob. 3ECh. 10.4 - Prob. 4ECh. 10.4 - Prob. 5ECh. 10.4 - Prob. 6ECh. 10.4 - Prob. 7ECh. 10.4 - Prob. 8ECh. 10.4 - Prob. 9ECh. 10.4 - Prob. 10ECh. 10.4 - Prob. 11ECh. 10.4 - 12. [BB] Could Dijkstra’s algorithm (original...Ch. 10.4 - Prob. 13ECh. 10.4 - 14. (a) If weights were assigned to the edges of...Ch. 10.4 - Prob. 15ECh. 10.4 - Prob. 16ECh. 10.4 - Prob. 17ECh. 10.4 - Prob. 18ECh. 10.4 - Prob. 19ECh. 10.4 - Prob. 20ECh. 10.4 - Prob. 21ECh. 10.4 - Prob. 22ECh. 10.4 - Prob. 23ECh. 10.4 - Prob. 24ECh. 10 - In the Konigsberg Bringe Problem (see fig. 9.1),...Ch. 10 - Prob. 2RECh. 10 - Suppose G1 and G2 are graphs with no vertices in...Ch. 10 - Prob. 4RECh. 10 - Prob. 5RECh. 10 - Is the graph Hamiltonian? Is it Eulerian? Explain...Ch. 10 - Determine, with reason, whether each of the...Ch. 10 - Prob. 8RECh. 10 - Prob. 9RECh. 10 - Prob. 10RECh. 10 - Prob. 11RECh. 10 - Prob. 12RECh. 10 - Prob. 13RECh. 10 - Prob. 14RECh. 10 - 15. A connected graph G has 10 vertices and 41...Ch. 10 - Prob. 16RECh. 10 - Let v1,v2,........v8 and w1,w2,..........w12 be...Ch. 10 - Prob. 18RECh. 10 - Martha claims that a graph with adjacency...Ch. 10 - Prob. 20RECh. 10 - Which of the following three matrices (if any) is...Ch. 10 - Apply the first form of Dijkstras algorithm to the...Ch. 10 - Prob. 23RECh. 10 - 24. Apply the original form of Dijkstra’s...Ch. 10 - Apply the improved version of Dijkstras algorithm...Ch. 10 - Prob. 26RECh. 10 - 27. Apply the Floyd- Warshall algorithm apply to...Ch. 10 - Prob. 28RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Apply Dijkstra's Algorithm to find the shortest path from a to z in the following graph.arrow_forwardFind the shortest path in the graph from g to a using Dijkstra's Algorithm in graph H. The table below has 3 blanks using Dijkstra's Algorithm. What belongs in the three blanks? e b 6 2 3 d. g a 2 4 6 4 Vertex Status Shortest Dist. from g Previous Vertex 11 +4 = 15, 12 + 1= 13 c, b a visited 9+3 = 12 e, d visited 6 + 5 = 11 f visited 7+2 = 9 f. e e visited 7 visited visited The shortest path is (g, e, d, b, a) = 13 6, 6 + 4 = 10, 7+ 6 = 13 7,6+ 4 = 10, 9 + 3 = 12 6, 6 + 5 = 11, 7 + 6 = 13 O d 6, 6 + 4 = 10, 7+5 = 12 OOO0arrow_forwardPlease solve and explain, thank you!arrow_forward
- If Dijkstra's Algorithm is used to find the shortest path from vertex a to vertex z in the following graph, what is the order in which the vertices are added to set 5? b 3 8 a 2 6 4 O a, c, b, d, z O a, b, c, d, z O a, b, d, z O a, c, d, zarrow_forwardC D 21 20 15 B Apply the nearest neighbor algorithm to the graph above starting at vertex A. Give your answer as a list of vertices, starting and ending at vertex A. Example: ABCDAarrow_forwardhelp pls explain each step thank uarrow_forward
- A chicken farmer wishes to provide electric power to each chicken house on his farm by installing buried electrical power lines. The graph below illustrates the locations of the houses and the distances between them in feet. Use Kruskal's algorithm to determine how the farmer should dig channels in order to minimize the amount of digging. Also determine the minimum total length of channels that must be dug.arrow_forwardApply Dijkstra's algorithm for the following graph. Show the values for p and IN and the d values and s values for each pass. Write out the nodes in the shortest path from 2 to 5 and the distances of the path. Hint: (1) p is the current node that has the shortest d that you will include in your current IN set. (2) Node 2 is the starting node (3) Node 5 is the ending node (4) Please show all steps like we did during the class: draw the table for each step, calculate the new distance for each step, update the table, repeat until the ending node is included in the IN set, find the shortest path and the shortest length 2 S ∞ 7 3 x /in 6 9 4arrow_forwarddetermine the number of vertices and edgesand find the in-degree and out-degree of each vertex for thegiven directed multigraph.arrow_forward
- helparrow_forwardU 14 D A 10- B Apply the sorted edges algorithm to the graph above. Find the total cost of the resulting circuit.arrow_forwardFind the shortest path in graph G from a to e using Dijkstra's Algorithm. The table below has 3 blanks using Dijkstra's Algorithm. What belongs in the three blanks? b 5 8 2 9 Vertex G b a 14 Ob Status visited visited visited visited 00 The shortest path is (a, b, d, e) = 9 Shortest Dist. from a 0 4,3+8=11, 3+9 = 12 5, 4+4= 8, 3+9 = 12 5, 3+8=11, 3+9 = 12 5,3 +8=11,4+4 = 8 3+1=4 3 4+4=8 8+1=9 Previous Vertex C7, C a c. b c.darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Graph Theory: Euler Paths and Euler Circuits; Author: Mathispower4u;https://www.youtube.com/watch?v=5M-m62qTR-s;License: Standard YouTube License, CC-BY
WALK,TRIAL,CIRCUIT,PATH,CYCLE IN GRAPH THEORY; Author: DIVVELA SRINIVASA RAO;https://www.youtube.com/watch?v=iYVltZtnAik;License: Standard YouTube License, CC-BY