Concept explainers
Applying the Concepts 10–4
More Math Means More Money
In a study to determine a person’s yearly income 10 years after high school, it was found that the two biggest predictors are number of math and science courses taken and number of hours worked per week during a person’s senior year of high school. The multiple regression equation generated from a sample of 20 individuals is
y′ = 6000 + 4540x1 + 1290x2
Let x1 represent the number of math and science courses taken and x2 represent hours worked during senior year. The
1. What is the dependent variable?
2. What are the independent variables?
3. What are the multiple regression assumptions?
4. Explain what 4540 and 1290 in the equation tell us.
5. What is the predicted income if a person took 8 math and science classes and worked 20 hours per week during her or his senior year in high school?
6. What does a multiple
7. Compute R2.
8. Compute the adjusted R2.
9. Would the equation be considered a good predictor of income?
10. What are your conclusions about the relationship among courses taken, hours worked, and yearly income?
1.
To find: The dependent variable.
Answer to Problem 1AC
The dependent variable is a person’s yearly income 10 years after high school.
Explanation of Solution
Given info:
The data shows that the correlation between income and math and science courses is 0.63. The correlation between income and hours worked is 0.84, and the correlation between math and science courses and hours worked is 0.31.
Justification:
Here, a person’s yearly income 10 years after school is obtained by using the predictor’s number of math and science courses taken and number of hours worked per week during a person’s senior year of high school.
Thus, the dependent variable is a person’s yearly income 10 years after high school.
2.
To find: The independent variables.
Answer to Problem 1AC
The independent variables are number of math and science courses taken and number of hours worked per week during a person’s senior year of high school.
Explanation of Solution
Justification:
Here, the predictor’s number of math and science courses taken and number of hours worked per week during a person’s senior year of high school are used to predict a person’s yearly income 10 years after school is obtained by using
Thus, the independent variables are number of math and science courses taken and number of hours worked per week during a person’s senior year of high school.
3.
To write: The assumptions for the multiple regression.
Answer to Problem 1AC
The assumption is that the independent variables number of math and science courses taken and number of hours worked per week during a person’s senior year of high school are not correlated.
Explanation of Solution
Justification:
The main assumption of the multiple regression assumption is that correlation between number of math and science courses taken and number of hours worked per week during a person’s senior year of high school is less.
4.
To explain: The numbers 4540 and 1290 in the regression equation.
Explanation of Solution
Justification:
From the given information, the regression equation is
Interpretation of 4540:
It can said that by keeping the number of hours as constant and one unit increase in the number of math and science courses, a person’s yearly income 10 years after high school increases by $4,540.
Interpretation of 1290:
It can said that by keeping the number of math and science courses as constant and one unit increase in the number of hours, a person’s yearly income 10 years after high school increases by $1,290.
5.
To find: The predicted income if a person took 8 math and science classes and worked 20 hours per week during her of his senior year in high school.
Answer to Problem 1AC
The predicted income if a person took 8 math and science classes and worked 20 hours per week during her of his senior year in high school is $68,120.
Explanation of Solution
Calculation:
From the given information, the regression equation is
Substitute 8 for
Thus, the predicted income if a person took 8 math and science classes and worked 20 hours per week during her of his senior year in high school is $68,120.
6.
To explain: The meaning of a multiple correlation coefficient of 0.926.
Answer to Problem 1AC
There is strong positive correlation between the dependent variable and independent variables.
Explanation of Solution
Justification:
The multiple correlation coefficient gives the correlation between independent variables. Here, the multiple correlation coefficient is 0.926. That is, there is strong positive correlation between the dependent variable and independent variables.
7.
To compute: The value of
Answer to Problem 1AC
The value of
Explanation of Solution
Calculation:
The value of
Thus, the value of
8.
To find: The adjusted
Answer to Problem 1AC
The adjusted
Explanation of Solution
Calculation:
The formula for finding adjusted
Substitute 0.857 for
Thus, the adjusted
9.
To explain: Whether the equation be considered a good predictor of income.
Answer to Problem 1AC
The equation be considered a good predictor in income.
Explanation of Solution
Justification:
From the part (7), the value of
10.
To find: The conclusions about the relationship among courses taken, hour’s worked and yearly income.
Answer to Problem 1AC
It can be concluded that the person’s yearly income increases with the increase in the number of math and science courses taken and hours worked during senior year.
Explanation of Solution
Justification:
As the variables number of math and science courses taken and hours worked during senior year, the person’s yearly income increases. Thus, it can be concluded that the person’s yearly income increases with the increase in the number of math and science courses taken and hours worked during senior year.
Want to see more full solutions like this?
Chapter 10 Solutions
Elementary Statistics: A Step By Step Approach
Additional Math Textbook Solutions
Elementary & Intermediate Algebra
Calculus: Early Transcendentals (2nd Edition)
Precalculus: Mathematics for Calculus (Standalone Book)
Elementary and Intermediate Algebra: Concepts and Applications (7th Edition)
Introductory Statistics
Graphical Approach To College Algebra
- Find the equation of the regression line for the following data set. x 1 2 3 y 0 3 4arrow_forwardOlympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardLife Expectancy The following table shows the average life expectancy, in years, of a child born in the given year42 Life expectancy 2005 77.6 2007 78.1 2009 78.5 2011 78.7 2013 78.8 a. Find the equation of the regression line, and explain the meaning of its slope. b. Plot the data points and the regression line. c. Explain in practical terms the meaning of the slope of the regression line. d. Based on the trend of the regression line, what do you predict as the life expectancy of a child born in 2019? e. Based on the trend of the regression line, what do you predict as the life expectancy of a child born in 1580?2300arrow_forward
- Cable TV The following table shows the number C. in millions, of basic subscribers to cable TV in the indicated year These data are from the Statistical Abstract of the United States. Year 1975 1980 1985 1990 1995 2000 C 9.8 17.5 35.4 50.5 60.6 60.6 a. Use regression to find a logistic model for these data. b. By what annual percentage would you expect the number of cable subscribers to grow in the absence of limiting factors? c. The estimated number of subscribers in 2005 was 65.3million. What light does this shed on the model you found in part a?arrow_forwardWhat is regression analysis? Describe the process of performing regression analysis on a graphing utility.arrow_forwardXYZ Corporation Stock Prices The following table shows the average stock price, in dollars, of XYZ Corporation in the given month. Month Stock price January 2011 43.71 February 2011 44.22 March 2011 44.44 April 2011 45.17 May 2011 45.97 a. Find the equation of the regression line. Round the regression coefficients to three decimal places. b. Plot the data points and the regression line. c. Explain in practical terms the meaning of the slope of the regression line. d. Based on the trend of the regression line, what do you predict the stock price to be in January 2012? January 2013?arrow_forward
- Table 2 shows a recent graduate’s credit card balance each month after graduation. a. Use exponential regression to fit a model to these data. b. If spending continues at this rate, what will the graduate’s credit card debt be one year after graduating?arrow_forwardThe mall has a set of data with employee age (X) and the corresponding number of annual on-the-job-accidents(Y). Analysis on the set finds that the regression equation is Y=100-3X. What is the likely number of accidents for someone aged 30? 97 100 10 none of the abovearrow_forwardState the Interpretation of Regression Coefficients?arrow_forward
- Bill wants to explore factors affecting work stress. He would like to examine the relationship between age, number of years at the workplace, perceived social support, and work stress. He collects data on the variables from 100 employees (males and females) working in banks. Conduct a multiple regression analysis to answer the following questions: What is the relationship of age, number of years, and social support with work stress? Is the regression significant? If yes, what does it indicate? What is the regression equation for all the predictors? Write a results section based on your analysis that answers the research question. * last person got this wrong*arrow_forwardA weather forecaster examines the weather patterns in a random sample of cities in order to better understand how the number of days of rain a city gets per year is related to the number of hours of sunshine that city gets per year.The regression equation to predict hours of sunshine based on days of rain is as follows: Predicted hours of sunshine = 2847 – 6.88(days of rain). From this regression equation, we know that r, or the correlation between days of rain and hours of sunshine, must be weak strong positive negative non-linear.arrow_forwardResearchers studying tigers collected data on the length (in meters) and weight (in kilograms) of the animals. Is there statistically significant evidence that the length of tigers is related to their weight?arrow_forward
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning