Concept explainers
(a) Dry Cleaning Using the initial probability
(b) Using your results front part (a), find the difference between the equilibrium proportion of customers going to Johnson and the proportion going there for each of the first 10 weeks. Be sure to compute the equilibrium proportions to at least 6 decimal places.
(c) Find the ratio between each difference calculated in part (b) and the difference for the previous week.
(d) Using your results from part (c), explain how the probability vector approaches the equilibrium vector.
(e) Repeat parts (a)-(d) of this exercise using the initial probability vector [0.75 0.25].
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Finite Mathematics (11th Edition)
- 3. Let sin (22) + cos (T2) f(z) = z(22 + 1)(z+1) Compute f(z)dz over each of the contours/closed curves C1, C2, C3 and C4 shown below. L 10 -C x Don't use any Al tool show ur answer pe n and paper then takearrow_forwardwhat is the slope of the linear equation-5x+2y-10=0arrow_forward1. Evaluate (2,5) (3x+y)dx+(2y-x)dy (0,1) (i) along the straight lines from (0, 1) to (2, 1) and then from (2, 1) to (2,5), and (ii) along the parabola y = x² + 1. Don't use any Al tool show ur answer in pe n and paper then takearrow_forward
- Don't use any Al tool show ur answer in pe n and paper then take 20. Solve the given system of differential equations: x' = x+y, x(0) = 0 y' = 2x, y(0) = 1arrow_forward4. Verify the Cauchy-Goursat theorem for the function f(z) =225z around the closed curve C defined by a half circle || = 1 from the point (1,0) to (-1, 0) in the counterclockwise direction and then the straight line from (-1,0) to (1,0). Don't use any Al tool show ur answer in pe n and paper then takearrow_forward2. Evaluate the following integral using cauchy integral theorem: ||=3 sin (22)+cos (22) (2-1)(2-2) -dz Don't use any Al tool show ur answer in pe n and paper then takearrow_forward
- 18. Solve the given differential equation: y' + y = f(t), y(0) = 5, where f(t) = 0arrow_forward16. Solve the given differential equation: y" + 4y Given, = sin (t)u(t2), y(0) = 1, y'(0) = 0 1 = (x² + 1)(x²+4) 1/3 -1/3 + x²+1 x²+4 Don't use any Al tool show ur answer in pe n and paper then takearrow_forwardHow to solve and explain (7x^2 -10x +11)-(9x^2 -4x + 6)arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning