VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
12th Edition
ISBN: 9781260916942
Author: BEER
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 10.2, Problem 10.97P

Bars AB and BC, each with a length l and of negligible weight, are attached to two springs, each of constant k. The springs are undeformed, and the system is in equilibrium when θ1 = θ2 = 0.

Determine the range of values of P for which the equilibrium position is stable.

Chapter 10.2, Problem 10.97P, Bars AB and BC, each with a length l and of negligible weight, are attached to two springs, each of

Fig. P10.97

Expert Solution & Answer
Check Mark
To determine

Find the range of values of P for which the equilibrium of the system is stable.

Answer to Problem 10.97P

The range of values of P for which the equilibrium position is stable is 0P<0.382kl_.

Explanation of Solution

Given information:

The system is in equilibrium when θ1=θ2=0.

Calculation:

Show the free-body diagram of the arrangement as in Figure 1.

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA), Chapter 10.2, Problem 10.97P

Find the horizontal distance (xB) using the relation.

xB=lsinθ1

Find the horizontal distance (xC) using the relation.

xC=lsinθ1+lsinθ2

Find the vertical distance (yC) using the relation.

yC=lcosθ1+lcosθ2

When the values are small,

sinθ1θ1;sinθ2θ2cosθ11θ122;cosθ21θ222

Find the potential energy (V) using the relation.

V=Vg+Vs=PyC+12kxB2+12kxC2

Here, the magnitude of the force applied at C is P and the spring constant is k.

Substitute (lcosθ1+lcosθ2) for yC, lsinθ1 for xB, and (lsinθ1+lsinθ2) for xC.

V=P(lcosθ1+lcosθ2)+12k(lsinθ1)2+12k(lsinθ1+lsinθ2)2

Substitute θ1 for sinθ1, θ2 for sinθ2, (1θ122) for cosθ1, and (1θ222) for cosθ2.

V=P(l(1θ122)+l(1θ222))+12k(lθ1)2+12k(lθ1+lθ2)2=Pl(1θ122+1θ222)+12kl2(θ12+(θ1+θ2)2) (1)

Differentiate the Equation (1) with respect to θ1.

Vθ1=Pl(2θ12)+12kl2(2θ1+2(θ1+θ2))=Plθ1+kl2(2θ1+θ2) (2)

Differentiate the Equation (2).

2Vθ12=Pl+2kl2

Differentiate the equation (2) with θ2 to find the derivative of 2Vθ1θ2.

2Vθ1θ2=kl2

Differentiate the Equation (1) with respect to θ2.

Vθ2=Pl(2×θ22)+12kl2(2(θ1+θ2))=Plθ2+kl2(θ1+θ2) (3)

Differentiate the Equation;

2Vθ22=Pl+kl2

Condition 1:

When the equilibrium is stable, θ1=θ2=0.

Substitute 0 for θ1 and 0 for θ2 in Equation (2).

Vθ1=Pl(0)+kl2(2(0)+(0))=0

Substitute 0 for θ1 and 0 for θ2 in Equation (3).

Vθ2=Pl(0)+kl2(0+0)=0

Vθ1=Vθ2=0

The condition is satisfied. The equilibrium is stable.

Condition 2:

Check the condition,

(2Vθ1θ2)22Vθ122Vθ22<0

Substitute kl2 for 2Vθ1θ2, (Pl+2kl2) for 2Vθ12, and (Pl+kl2) for 2Vθ22.

(kl2)2(Pl+2kl2)(Pl+kl2)<0k2l4P2l2+Pkl3+2Pkl32k2l4<0P2+3Pklk2l2<0P23Pkl+k2l2>0

Solve the equation using the mathematical equation.

P<352kl<0.382kl

Condition 3;

Check the condition;

2Vθ12>0Pl+2kl2>0P+2kl>0P<2kl

Condition 4:

2Vθ22>0Pl+kl2>0P+kl>0P<kl

Refer to all the conditions,

The minimum value of P is 0.

The maximum value of P is 0.382kl.

Therefore, the range of values of P for which the equilibrium position is stable is 0P<0.382kl_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A pump delivering 230 lps of water at 30C has a 300-mm diameter suction pipe and a 254-mm diameter discharge pipe as shown in the figure. The suction pipe is 3.5 m long and the discharge pipe is 23 m long, both pipe's materials are cast iron. The water is delivered 16m above the intake water level. Considering head losses in fittings, valves, and major head loss. a) Find the total dynamic head which the pump must supply. b)It the pump mechanical efficiency is 68%, and the motor efficiency is 90%, determine the power rating of the motor in hp.
The tensile 0.2 percent offset yield strength of AISI 1137 cold-drawn steel bars up to 1 inch in diameter from 2 mills and 25 heats is reported as follows: Sy 93 95 101 f 97 99 107 109 111 19 25 38 17 12 10 5 4 103 105 4 2 where Sy is the class midpoint in kpsi and fis the number in each class. Presuming the distribution is normal, determine the yield strength exceeded by 99.0% of the population. The yield strength exceeded by 99.0% of the population is kpsi.
Solve this problem and show all of the work

Chapter 10 Solutions

VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)

Ch. 10.1 - Solve Prob. 10.10, assuming that the force P...Ch. 10.1 - Prob. 10.12PCh. 10.1 - Prob. 10.13PCh. 10.1 - Prob. 10.14PCh. 10.1 - Prob. 10.15PCh. 10.1 - 10.15 and 10.16 Derive an expression for the...Ch. 10.1 - Prob. 10.17PCh. 10.1 - Prob. 10.18PCh. 10.1 - Prob. 10.19PCh. 10.1 - Prob. 10.20PCh. 10.1 - Prob. 10.21PCh. 10.1 - A couple M with a magnitude of 100 Nm isapplied as...Ch. 10.1 - Rod AB is attached to a block at A that can...Ch. 10.1 - Solve Prob. 10.23, assuming that the 800-N force...Ch. 10.1 - In Prob. 10.9, knowing that a = 42 in., b = 28...Ch. 10.1 - Determine the value of corresponding to...Ch. 10.1 - Prob. 10.27PCh. 10.1 - Determine the value of corresponding to...Ch. 10.1 - Prob. 10.29PCh. 10.1 - Two rods AC and CE are connected by a pin at Cand...Ch. 10.1 - Solve Prob. 10.30 assuming that force P is movedto...Ch. 10.1 - Prob. 10.32PCh. 10.1 - Prob. 10.33PCh. 10.1 - Prob. 10.34PCh. 10.1 - Prob. 10.35PCh. 10.1 - Prob. 10.36PCh. 10.1 - Prob. 10.37PCh. 10.1 - Prob. 10.38PCh. 10.1 - Prob. 10.39PCh. 10.1 - Prob. 10.40PCh. 10.1 - Prob. 10.41PCh. 10.1 - The position of boom ABC is controlled by...Ch. 10.1 - Prob. 10.43PCh. 10.1 - Prob. 10.44PCh. 10.1 - Prob. 10.45PCh. 10.1 - Prob. 10.46PCh. 10.1 - Denoting the coefficient of static friction...Ch. 10.1 - Prob. 10.48PCh. 10.1 - Prob. 10.49PCh. 10.1 - Prob. 10.50PCh. 10.1 - Prob. 10.51PCh. 10.1 - Prob. 10.52PCh. 10.1 - Prob. 10.53PCh. 10.1 - Prob. 10.54PCh. 10.1 - Prob. 10.55PCh. 10.1 - Prob. 10.56PCh. 10.1 - Prob. 10.57PCh. 10.1 - Determine the horizontal movement of joint C if...Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.29....Ch. 10.2 - Prob. 10.60PCh. 10.2 - Prob. 10.61PCh. 10.2 - Prob. 10.62PCh. 10.2 - Prob. 10.63PCh. 10.2 - Prob. 10.64PCh. 10.2 - Prob. 10.65PCh. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.38....Ch. 10.2 - Prob. 10.67PCh. 10.2 - Prob. 10.68PCh. 10.2 - Prob. 10.69PCh. 10.2 - Prob. 10.70PCh. 10.2 - Prob. 10.71PCh. 10.2 - Prob. 10.72PCh. 10.2 - Prob. 10.73PCh. 10.2 - Prob. 10.74PCh. 10.2 - A load W of magnitude 144 lb is applied to...Ch. 10.2 - Solve Prob. 10.75, assuming that the spring...Ch. 10.2 - Bar ABC is attached to collars A and B that...Ch. 10.2 - Solve Prob. 10.77, assuming that the spring...Ch. 10.2 - Prob. 10.79PCh. 10.2 - Prob. 10.80PCh. 10.2 - Prob. 10.81PCh. 10.2 - A spring AB of constant k is attached to two...Ch. 10.2 - Prob. 10.83PCh. 10.2 - Prob. 10.84PCh. 10.2 - Prob. 10.85PCh. 10.2 - Prob. 10.86PCh. 10.2 - Prob. 10.87PCh. 10.2 - Prob. 10.88PCh. 10.2 - Prob. 10.89PCh. 10.2 - Prob. 10.90PCh. 10.2 - Prob. 10.91PCh. 10.2 - Prob. 10.92PCh. 10.2 - Prob. 10.93PCh. 10.2 - Prob. 10.94PCh. 10.2 - Prob. 10.95PCh. 10.2 - Prob. 10.96PCh. 10.2 - Bars AB and BC, each with a length l and of...Ch. 10.2 - Solve Prob. 10.97 knowing that l = 30 in. and k =...Ch. 10.2 - Bars AB and CD, each of length l and of negligible...Ch. 10.2 - Solve Prob. 10.99, assuming that the vertical...Ch. 10 - Determine the vertical force P that must be...Ch. 10 - Determine the couple M that must be applied...Ch. 10 - Prob. 10.103RPCh. 10 - Prob. 10.104RPCh. 10 - Prob. 10.105RPCh. 10 - Prob. 10.106RPCh. 10 - Prob. 10.107RPCh. 10 - Prob. 10.108RPCh. 10 - Prob. 10.109RPCh. 10 - Prob. 10.110RPCh. 10 - Prob. 10.111RPCh. 10 - Prob. 10.112RP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Undamped Free Vibration of SDOF (1/2) - Structural Dynamics; Author: structurefree;https://www.youtube.com/watch?v=BkgzEdDlU78;License: Standard Youtube License