(a)
Interpretation:
The
Concept Introduction:
The atomic number is equal to the number of protons of an element whereas sum of number of protons and number of neutrons is equal to mass number.
A form of chemical element having same atomic number but differ by mass number is known as isotopes. In nuclide notation of isotope, the mass number of the isotope is present in superscript in front of the
The expression is given by:
where, A = mass number and Z = atomic number
(b)
Interpretation:
The atomic number, mass number, number of protons and number of neutrons should be calculated for
Concept Introduction:
The atomic number is equal to the number of protons of an element whereas sum of number of protons and number of neutrons is equal to mass number.
A form of chemical element having same atomic number but differ by mass number is known as isotopes. In nuclide notation of isotope, the mass number of the isotope is present in superscript in front of the symbol of given element and atomic number is present in subscript in front of the symbol of the element.
The expression is given by:
where, A = mass number and Z = atomic number
(c)
Interpretation:
The atomic number, mass number, number of protons and number of neutrons should be calculated for selenium-75.
Concept Introduction:
The atomic number is equal to the number of protons of an element whereas sum of number of protons and number of neutrons is equal to mass number.
A form of chemical element having same atomic number but differ by mass number is known as isotopes. In nuclide notation of isotope, the mass number of the isotope is present in superscript in front of the symbol of given element and atomic number is present in subscript in front of the symbol of the element.
The expression is given by:
where, A = mass number and Z = atomic number
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
CONNECT IA GENERAL ORGANIC&BIO CHEMISTRY
- The table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardMaterials. The following terms are synonyms: tension, effort and stress.arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forward
- Please correct answer and don't used hand raiting and don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardConsider the following Figure 2 and two atoms that are initially an infinite distance apart, x =00, at which point the potential energy of the system is U = 0. If they are brought together to x = x, the potential energy is related to the total force P by dU dx = P Given this, qualitatively sketch the variation of U with x. What happens at x=x? What is the significance of x = x, in terms of the potential energy? 0 P, Force 19 Attraction Total Repulsion x, Distance Figure 2. Variation with distance of the attractive, repulsive, and total forces between atoms. The slope dP/dx at the equilibrium spacing xe is proportional to the elastic modulus E; the stress σb, corresponding to the peak in total force, is the theoretical cohesive strength.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning