Concept explainers
(a)
Interpretation:
The amount of each isotope present after 14 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant
Answer to Problem 52P
After 14.0 days,
Amount of Iodine-131 left = 62 mg
Amount of Xenon-131 formed = 62 mg
Explanation of Solution
Given Information:
N0 = 124 mg
t1/2 = 14 days
Calculation:
After 14.0 days, the initial concentration of phosphorus-32 reduces to half of its initial concentration and converts to sulfur-32.
Thus,
Hence,
Amount of phosphorus-32 left = 62 mg
Amount of sulfur-32 formed = 124 mg − 62 mg = 62 mg
(b)
Interpretation:
The amount of each isotope present after 28 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant
Answer to Problem 52P
After 28.0 days,
Amount of Phosphorus-32 left = 32 mg
Amount of Sulfur-32 formed = 92 mg
Explanation of Solution
Given Information:
N0 = 124 mg
t1/2 = 14 days
t = 28.0 days
Calculation:
After 28 days, amount of phosphorus-32 would be defined by N(t),where t is 28.0 days, as
Hence, the amount of phosphorus-32 decays and converts to sulfur-32. Therefore,
Amount of Phosphorus-32 left after 28.0 days = 32 mg
Amount of sulfur-32 formed after 28.0 days = 124 mg − 32 mg = 92 mg
(c)
Interpretation:
The amount of each isotope present after 42 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant
Answer to Problem 52P
After 42.0 days,
Amount of Phosphorus-32 left = 15.5 mg
Amount of Sulfur-32 formed = 108.5 mg
Explanation of Solution
Given Information:
N0 = 124 mg
t1/2 = 14 days
t = 42.0 days
Calculation:
After42 days, amount of phosphorus-32 would be defined by N(t),where t is 42.0 days, as
Hence, the amount of phosphorus-32 decays and converts to sulfur-32. Therefore,
Amount of Phosphorus-32 left after 42.0 days = 15.5 mg
Amount of sulfur-32 formed after 42.0 days = 124 mg − 15.5 mg = 108.5 mg
(d)
Interpretation:
The amount of each isotope present after 56 days needs to be determined.
Concept Introduction:
Half-life − It is the time required by original radioactive element to reduce to the half of its initial concentration. Thus, at half-life (
The decay of the radioactive element can be described by the following formula-
Where
N(t) − amount of reactant at time t
N0 − Initial concentration of the reactant
t1/2 − Half-life of the decaying reactant
Answer to Problem 52P
After 56.0 days,
Amount of Phosphorus-32 left = 7.75 mg
Amount of Sulfur-32 formed = 116.25 mg
Explanation of Solution
Given Information:
N0 = 124 mg
t1/2 = 14 days
t = 56.0 days
Calculation:
After 56 days, amount of phosphorus-32 would be defined by N(t),where t is 56.0 days, as
Hence, the amount of phosphorus-32 decays and converts to sulfur-32. Therefore,
Amount of Phosphorus-32 left after 56.0 days = 7.75 mg
Amount of sulfur-32 formed after 56.0 days = 124 mg − 7.75 mg =116.25 mg
Want to see more full solutions like this?
Chapter 10 Solutions
CONNECT IA GENERAL ORGANIC&BIO CHEMISTRY
- 239Pu is a nuclear waste byproduct with a half-life of 24,000 y. What fraction of the 239Pu present today will be present in 1000 y?arrow_forwardThe isotope 208Tl undergoes decay with a half-life of 3.1 min.. (a) What isotope is produced by the decay?. (b) How long will it take for 99.0% of a sample of pure 208Tl to decay?. (c) What percentage of a sample of pure 208Tl remains un-decayed after 1.0 h?arrow_forwardRecently, the skeleton of King Richard III was found under a parking lot in England. If tissue samples from the skeleton) contain about 93.79% of the carbon-14 expected in living tissue, what year did King Richard III die? The half-life fur carbon-14 is 5730 years.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co