A laminar flow wind tunnel has a test is 30cm in diameter and 80 cm length. The air is at
Answer: Approx 6%
The center line air speed acceleration at the end of the test section.
Answer to Problem 90P
The center line air speed acceleration at the end of the test section is
Explanation of Solution
Given information:
The diameter of the wind tunnel is
Write the expression for the Reynolds number at the end of the test section.
Here, the velocity of the air is
Write the expression for the increase the velocity by equation of continuity.
Here, the area at the beginning of the test section is
Write the expression for the area at beginning.
Here, the diameter of the wind tunnel is
Write the expression for the area at the end of the test section.
Here, the displacement thickness is
Write the expression for displacement thickness.
Write the expression for the velocity increment.
Write the expression for the percentage of velocity increase at the end if the test section.
Write the expression for the radius of the wind tunnel.
Here, the diameter of the wind tunnel is
Calculation:
Refer to the Table A-9 "properties of air" to obtain the value of kinematic viscosity
Substitute
The value of Reynolds number is less than
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
The center line air speed acceleration at the end of the test section is
Want to see more full solutions like this?
Chapter 10 Solutions
Fluid Mechanics: Fundamentals and Applications
- A wind stress of 0.2 N m-2 blows over an initially stationary freshwater lake, 20 km long, and moves water downwind in the upper 10 m of the 20 m deep lake. (a) Estimate the difference in lake level between the ends of the lake in the direction of the wind one would expect when the wind force is balanced by the opposing pressure force in the upper 10 m (assuming no Coriolis influence in the dynamical balance) (b) The current driven in the lower 10 m by the pressure force which is balanced by the vertical frictional forces characterized by a coefficient of vertical turbulent eddy viscosity Az=0.02 m2 s -1 .arrow_forwardA pitot tube is a simple device used to experimentally determine the velocity of a flow, see the figure below. U, ليا و السهر To manometer (b) d D > 1 P01 -P02 (c) (a) FIG. 6.4 Pitot probes. (a) Simple pitot tube; (b) front view of tube with flattened open- ing for boundary-layer work; (c) pitot probe in supersonic flow. = For a supersonic flow, determine an analytic relation for the ratio poz/p1 = f(M) that will allow you to find the incoming Mach number.arrow_forwardThe momentum thickness OM for laminar flow over a flat plate is (115/1134) 6. Find the following: a) Boundary layer thickness (6) divided by x. Compare this answer to the Blasius Solution. Answer should be 6/x = 5.733/sqrt(Rex). b) Local skin friction coefficient (cf). Answer hould be 0.5814/sqrt(Rex). c) Friction Drag Coefficient. Answer should be 1.1628/sqrt(Rex).arrow_forward
- A stirrer mixes liquid chemicals in a large tank. The free surface of the liquid is exposed to room air. Surface tension effects are negligible. Discuss the boundary conditions required to solve this problem. Specifically, what are the velocity boundary conditions in terms of cylindrical coordinates (r, ?, z) and velocity components (ur, u?, uz) at all surfaces, including the blades and the free surface? What pressure boundary conditions are appropriate for this flow field? Write mathematical equations for each boundary condition and discuss.arrow_forwardPlease helparrow_forwardA number of straight 25-cm-long microtubes of diameter dare bundled together into a “honeycomb” whose totalcross-sectional area is 0.0006 m 2 . The pressure drop fromthe entrance to exit is 1.5 kPa. It is desired that the total volumeflow rate be 5 m 3 /h of water at 20 ° C. ( a ) What is theappropriate microtube diameter? ( b ) How many microtubesare in the bundle? ( c ) What is the Reynolds numberof each microtube?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY