Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 1CP
Discuss how nondimensalizsionalization of the Navier-Stokes equation is helpful in obtaining approximate solutions. Give an example.
Expert Solution & Answer
To determine
The advantages of solving Navier Strokes equation using non-dimensionalization.
Explanation of Solution
Non-dimensionalization of Navier-Stokes equation helps in obtaining approximate solutions. This can be explained from below mentioned points:
- Non-dimensionalization helps in reducing the complexity of any equation.
- It helps in removing the dimensions of the all the quantities present.
- The primary function is to make the dimension of the quantities present in Navier-Stokes equation unity.
- It calculates small quantities with respect to a large quantity.
- For example- If the value of Strouhal number is less with respect to Reynolds number, we can ignore the term containing Strouhal number whereas the respective value of Reynolds number must retain.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please do both parts and correctly I will rate your solution but pls follow what I have said other wise skip pls
Consider a three-dimensional, incompressible, irrotationalfl ow. Use the following two methods to prove that theviscous term in the Navier-Stokes equation is identicallyzero: (a) using vector notation; and (b) expanding out thescalar terms and substituting terms from the defi nition ofirrotationality.
Discuss how nondimensionalization of the Navier– Stokes equation is helpful in obtaining approximate solutions. Give an example.
Chapter 10 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 10 - Discuss how nondimensalizsionalization of the...Ch. 10 - Prob. 2CPCh. 10 - Expalain the difference between an “exact”...Ch. 10 - Prob. 4CPCh. 10 - Prob. 5CPCh. 10 - Prob. 6CPCh. 10 - Prob. 7CPCh. 10 - A box fan sits on the floor of a very large room...Ch. 10 - Prob. 9PCh. 10 - Prob. 10P
Ch. 10 - Prob. 11PCh. 10 - In Example 9-18 we solved the Navier-Stekes...Ch. 10 - Prob. 13PCh. 10 - A flow field is simulated by a computational fluid...Ch. 10 - In Chap. 9(Example 9-15), we generated an “exact”...Ch. 10 - Prob. 16CPCh. 10 - Prob. 17CPCh. 10 - A person drops 3 aluminum balls of diameters 2 mm,...Ch. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Consider again the slipper-pad bearing of Prob....Ch. 10 - Consider again the slipper the slipper-pad bearing...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34EPCh. 10 - Discuss what happens when oil temperature...Ch. 10 - Prob. 36PCh. 10 - Prob. 38PCh. 10 - Prob. 39CPCh. 10 - Prob. 40CPCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 -
Ch. 10 - Prob. 50CPCh. 10 - Consider the flow field produced by a hair dayer...Ch. 10 - In an irrotational region of flow, the velocity...Ch. 10 -
Ch. 10 - Prob. 54CPCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 58PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 60PCh. 10 - Consider a steady, two-dimensional,...Ch. 10 -
Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - In an irrotational region of flow, we wtite the...Ch. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Water at atmospheric pressure and temperature...Ch. 10 - The stream function for steady, incompressible,...Ch. 10 -
Ch. 10 - We usually think of boundary layers as occurring...Ch. 10 - Prob. 73CPCh. 10 - Prob. 74CPCh. 10 - Prob. 75CPCh. 10 - Prob. 76CPCh. 10 - Prob. 77CPCh. 10 - Prob. 78CPCh. 10 - Prob. 79CPCh. 10 - Prob. 80CPCh. 10 - Prob. 81CPCh. 10 -
Ch. 10 - On a hot day (T=30C) , a truck moves along the...Ch. 10 - A boat moves through water (T=40F) .18.0 mi/h. A...Ch. 10 - Air flows parallel to a speed limit sign along the...Ch. 10 - Air flows through the test section of a small wind...Ch. 10 - Prob. 87EPCh. 10 - Consider the Blasius solution for a laminar flat...Ch. 10 - Prob. 89PCh. 10 - A laminar flow wind tunnel has a test is 30cm in...Ch. 10 - Repeat the calculation of Prob. 10-90, except for...Ch. 10 - Prob. 92PCh. 10 - Prob. 93EPCh. 10 - Prob. 94EPCh. 10 - In order to avoid boundary laver interference,...Ch. 10 - The stramwise velocity component of steady,...Ch. 10 - For the linear approximation of Prob. 10-97, use...Ch. 10 - Prob. 99PCh. 10 - One dimension of a rectangular fiat place is twice...Ch. 10 - Prob. 101PCh. 10 - Prob. 102PCh. 10 - Prob. 103PCh. 10 - Static pressure P is measured at two locations...Ch. 10 - Prob. 105PCh. 10 - For each statement, choose whether the statement...Ch. 10 - Prob. 107PCh. 10 - Calculate the nine components of the viscous...Ch. 10 - In this chapter, we discuss the line vortex (Fig....Ch. 10 - Calculate the nine components of the viscous...Ch. 10 - Prob. 111PCh. 10 - The streamwise velocity component of a steady...Ch. 10 - For the sine wave approximation of Prob. 10-112,...Ch. 10 - Prob. 115PCh. 10 - Suppose the vertical pipe of prob. 10-115 is now...Ch. 10 - Which choice is not a scaling parameter used to o...Ch. 10 - Prob. 118PCh. 10 - Which dimensionless parameter does not appear m...Ch. 10 - Prob. 120PCh. 10 - Prob. 121PCh. 10 - Prob. 122PCh. 10 - Prob. 123PCh. 10 - Prob. 124PCh. 10 - Prob. 125PCh. 10 - Prob. 126PCh. 10 - Prob. 127PCh. 10 - Prob. 128PCh. 10 - Prob. 129PCh. 10 - Prob. 130PCh. 10 - Prob. 131PCh. 10 - Prob. 132PCh. 10 - Prob. 133PCh. 10 - Prob. 134PCh. 10 - Prob. 135PCh. 10 - Prob. 136PCh. 10 - Prob. 137PCh. 10 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Which nondimensional parameter in the nondimensionalized Navier–Stokes equation is eliminated by use of modified pressure instead of actual pressure? Explain.arrow_forwardWhich dimensionless parameter does not appear in the nondimensionalized Navier–Stokes equation? (a) Reynolds number (b) Prandtl number (c) Strouhal number (d ) Euler number (e) Froude numberarrow_forwardBy nondimensionalizing the Navier-Stokes equations; Obtain from Reynolds number, Grashof number and Froude number type. Discuss the physical meaning of each dimensionless number.arrow_forward
- Rederive Pouiseuelle’s Law for flow in a tube using the Navier-Stokes strategy. What are the boundary conditions you will use? (you can use a horizontal tube with no gravity at play and just small p, not script p)arrow_forwardWhat criteria can you use to determine whether an approximation of the Navier–Stokes equation is appropriate or not? Explain.arrow_forwardHow could the fluid flow variable be introduced into the following simplified Navier-Stokes equation? If you consider: -The fluid is incompressible P dv at µAv + VP = 0 (Ctrl) -arrow_forward
- Write the significance of Navier-stokes equation? explain in detail.arrow_forward6arrow_forwardA proposed three-dimensional incompressible fl ow fi eldhas the following vector form:V = Kxi + Kyj - 2Kzk( a ) Determine if this fi eld is a valid solution to continuityand Navier-Stokes. ( b ) If g = - g k, fi nd the pressure fi eldp ( x , y , z ). ( c ) Is the fl ow irrotational?arrow_forward
- How does the Navier-Stokes equation encapsulate the complexities of fluid behavior, and what challenges arise when attempting to solve it in the context of mechanical engineering's fluid mechanicsarrow_forwardThe x-component of the Navier-Stokes equations is given below. Convert it to dimensionless form using a velocity scale U, a length scale I, and a pressure scale P. du at du du du +u+v+w. = ax dy az 1 op μdu du du + + pax² ay ² a=² paxarrow_forwardWrite down the continuity equation and the Navier-Stokes equations in the x-, y-, and z-directions for an incompressible, three-dimensional flow. There should be a total of fourequations. If we make the assumptions that the flow is steady and inviscid, what do thesefour equations simplify to? Note: this is notvan assignment question and not a grade questionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY