Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 64P

A tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 4.03 m/s on a horizontal section of a track as shown in Figure P10.33. It rolls around the inside of a vertical circular loop of radius r = 45.0 cm. As the ball nears the bottom of the loop, the shape of the track deviates from a perfect circle so that the ball leaves the track at a point h = 20.0 cm below the horizontal section. (a) Find the ball’s speed at the top of the loop. (b) Demonstrate that the ball will not fall from the track at the top of the loop. (c) Find the ball’s speed as it leaves the track at the bottom. (d) What If? Suppose that static friction between ball and track were negligible so that the ball slid instead of rolling. Describe the speed of the ball at the top of the loop in this situation. (e) Explain your answer to part (d).

Figure P10.33

Chapter 10, Problem 64P, A tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 4.03 m/s on

(a)

Expert Solution
Check Mark
To determine

The speed of the ball at the top of the loop.

Answer to Problem 64P

The speed of the ball at the top of the loop is 2.38m/s .

Explanation of Solution

Given information: The radius of the circular loop is 45.0cm , the height of the track from the horizontal section is 20.0cm and the initial velocity of the ball is 4.03m/s .

Write the expression for the law of energy conservation between horizontal track and the top of the loop is,

Kt1+Kr1=Kt2+Kr2+U2 (1)

Here,

Kt1 is the translational kinetic energy of the ball at horizontal track.

Kr1 is the rotational kinetic energy of the ball at horizontal track.

Kt2 is the translational kinetic energy of the ball at top point of the loop.

Kr2 is the rotational kinetic energy of the ball at top point of the loop.

U2 is the potential energy of the ball at top point of the loop.

Write the expression for the translational kinetic energy of the ball at horizontal track is,

Kt1=12mv12

Here,

m is the mass of the ball.

v1 is the initial linear velocity of the ball.

Write the expression for the rotational kinetic energy of the ball at horizontal track is,

Kr1=12Iω12 (2)

Here,

I is the moment of inertia of the ball about the center of mass.

ω1 is the initial angular speed of the ball.

Write the expression for the moment of inertia of the ball is,

I=23mr2

Write the expression for the initial angular speed of the ball is,

ω1=v1r

Substitute 23mr2 for I and v1r for ω1 in equation (2).

Kr1=12(23mr2)(v1r)2=13mv12

Write the expression for the translational kinetic energy of the ball at top point of the loop is,

Kt2=12mv22

Here,

v2 is the final linear velocity of the ball.

Write the expression for the rotational kinetic energy of the ball at top point of the loop is,

Kr2=12Iω22 (3)

Here,

ω2 is the initial angular speed of the ball.

Write the expression for the moment of inertia of the ball is,

I=23mr2

Write the expression for the initial angular speed of the ball is,

ω2=v2r

Substitute 23mr2 for I and v2r for ω2 in equation (2).

Kr2=12(23mr2)(v2r)2=13mv22

Write the expression for the potential energy of the ball at top point of the loop is,

U2=mg(2r)

Here,

g is the acceleration due to gravity.

Substitute 12mv12 for Kt1 , 13mv12 for Kr1 , 12mv22 for Kt2 , 13mv22 for Kr2 and mg(2r) for U2 in equation (1).

12mv12+13mv12=12mv22+13mv22+mg(2r)

Simplify the above equation for v2 .

56mv22=56mv12mg(2r)v2=v1265g(2r)

Substitute 9.8m/s2 for g , 45.0cm for r and 4.03m/s for v1 in above equation to find v2 .

v2=(4.03m/s)265×9.8m/s2×(2×45.0cm×102m1cm)=16.24m2/s210.58m2/s2=2.38m/s

Thus, the speed of the ball at the top of the loop is 2.38m/s .

Conclusion:

Therefore, the speed of the ball at the top of the loop is 2.38m/s .

(b)

Expert Solution
Check Mark
To determine

The reason that the ball will not fall from the track at the top of the loop.

Answer to Problem 64P

The ball will not fall because the value of the centripetal acceleration is more than the acceleration due to gravity at the top point of the circular loop.

Explanation of Solution

Given information: The radius of the circular loop is 45.0cm , the height of the track from the horizontal section is 20.0cm and the initial velocity of the ball is 4.03m/s .

Formula to calculate the centripetal acceleration on the ball at the top of the loop is,

a=(v2)2r

Here,

a is the centripetal acceleration act on the ball at the top of the loop.

Substitute 2.38m/s for v2 and 45.0cm for r to find a .

a=(2.38m/s)245.0cm×102m1cm=12.58m/s2

Thus, the centripetal acceleration act on the ball at the top of the loop is 12.58m/s2 .

Since the centripetal acceleration at the top of the loop is more than the acceleration due to gravity that is (a>g) hence the ball remains on the track at top of the loop and will not fall.

Conclusion:

Therefore, the ball will not fall because the value of the centripetal acceleration is more than the acceleration due to gravity at the top point of the circular loop.

(c)

Expert Solution
Check Mark
To determine

The speed of the ball as it leaves the track at the bottom.

Answer to Problem 64P

The speed of the ball as it leaves the track at the bottom is 4.31m/s .

Explanation of Solution

Given information: The radius of the circular loop is 45.0cm , the height of the track from the horizontal section is 20.0cm and the initial velocity of the ball is 4.03m/s .

Write the expression for the law of energy conservation between horizontal track and the bottom of the loop is,

Kt1+Kr1=Kt2+Kr2+U2 (4)

Here,

Kt2 is the translational kinetic energy of the ball at bottom point of the loop.

Kr2 is the rotational kinetic energy of the ball at bottom point of the loop.

U2 is the potential energy of the ball at bottom point of the loop.

Write the expression for the translational kinetic energy of the ball at bottom point of the loop is,

Kt3=12mv32

Here,

v3 is the linear velocity of the ball at bottom.

Write the expression for the rotational kinetic energy of the ball at bottom point of the loop is,

Kr3=12Iω32 (5)

Here,

ω3 is the initial angular speed of the ball.

Write the expression for the initial angular speed of the ball is,

ω3=v3r

Substitute 23mr2 for I and v3r for ω3 in equation (5).

Kr3=12(23mr2)(v3r)2=13mv32

Write the expression for the potential energy of the ball at top point of the loop is,

U3=mgh

Here,

g is the acceleration due to gravity.

h is the height of the bottom track from the horizontal section.

Substitute 12mv12 for Kt1 , 13mv12 for Kr1 , 12mv32 for Kt3 , 13mv32 for Kr3 and mgh for U3 in equation (4).

12mv12+13mv12=12mv32+13mv32mgh

Simplify the above equation for v3 .

56mv32=56mv12+mghv3=v12+65gh

Substitute 9.8m/s2 for g , 20.0cm for h and 4.03m/s for v1 in above equation to find v3 .

v3=(4.03m/s)2+65×9.8m/s2×20.0cm×102m1cm=16.24m2/s2+2.35m2/s2=4.31m/s

Thus, the speed of the ball as it leaves the track at the bottom is 4.31m/s .

Conclusion:

Therefore, the speed of the ball as it leaves the track at the bottom is 4.31m/s .

(d)

Expert Solution
Check Mark
To determine

The speed of the ball at the top of the loop if ball slide instead of roll.

Answer to Problem 64P

The speed of the ball at the top of the loop is imaginary.

Explanation of Solution

Given information: The radius of the circular loop is 45.0cm , the height of the track from the horizontal section is 20.0cm and the initial velocity of the ball is 4.03m/s .

Write the expression for the law of energy conservation between horizontal track and the top of the loop is,

Kt1=Kt2'+U2' (6)

Here,

Kt1 is the translational kinetic energy of the ball at horizontal track.

Kt2' is the new translational kinetic energy of the ball at top point of the loop.

U2' is the new potential energy of the ball at top point of the loop.

Write the expression for the rotational kinetic energy of the ball at horizontal track is,

Write the expression for the new translational kinetic energy of the ball at top point of the loop is,

Kt2=12m(v2')2

Here,

v2' is the new linear velocity of the ball at the top point.

Write the expression for the new potential energy of the ball at top point of the loop is,

U2'=mg(2r)

Substitute 12mv12 for Kt1 , 12m(v2')2 for Kt2' , and mg(2r) for U2 in equation (3).

12mv12=12m(v2')2+mg(2r)

Simplify the above equation for v2 .

12m(v2')2=11mv12mg(2r)v2'=v122g(2r)

Substitute 9.8m/s2 for g , 45.0cm for r and 4.03m/s for v1 in above equation to find v2' .

v2'=(4.03m/s)22×9.8m/s2×(2×45.0cm×102m1cm)=16.24m2/s217.64m2/s2=1.4m2/s2

Since the value inside the square root is negative that means the value is imaginary. This condition is impractical.

Thus, the speed of the ball at the top of the loop is imaginary.

Conclusion:

Therefore, the speed of the ball at the top of the loop is imaginary. It can’t be calculated.

(e)

Expert Solution
Check Mark
To determine

The explanation of the solution of part (d).

Answer to Problem 64P

The ball has not sufficient energy to arrive at top of the circular loop.

Explanation of Solution

Given information: The radius of the circular loop is 45.0cm , the height of the track from the horizontal section is 20.0cm and the initial velocity of the ball is 4.03m/s .

The velocity comes out to be imaginary in part (d) that indicates the situation in impossible because as the boll slide instead of rolling, the ball have only translational kinetic energy which is insufficient for the ball to reach the top point on the circular loop.

Thus, the ball did not arrive at the top point of the loop.

Conclusion:

Therefore, the ball has not sufficient energy to arrive at top of the circular loop.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Can you help me solve the questions please
Can you help me solve these questions please so i can see how to do it
How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't known

Chapter 10 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 10 - Prob. 4OQCh. 10 - Suppose a cars standard tires are replaced with...Ch. 10 - Figure OQ10.6 shows a system of four particles...Ch. 10 - Prob. 7OQCh. 10 - Prob. 8OQCh. 10 - Prob. 9OQCh. 10 - Prob. 10OQCh. 10 - A solid aluminum sphere of radius R has moment of...Ch. 10 - Prob. 1CQCh. 10 - Prob. 2CQCh. 10 - Prob. 3CQCh. 10 - Prob. 4CQCh. 10 - Prob. 5CQCh. 10 - Prob. 6CQCh. 10 - Prob. 7CQCh. 10 - Prob. 8CQCh. 10 - (a) What is the angular speed of the second hand...Ch. 10 - Prob. 10CQCh. 10 - Prob. 11CQCh. 10 - Prob. 12CQCh. 10 - Three objects of uniform densitya solid sphere, a...Ch. 10 - Which of the entries in Table 10.2 applies to...Ch. 10 - Prob. 15CQCh. 10 - Prob. 16CQCh. 10 - (a) Find the angular speed of the Earths rotation...Ch. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - A bar on a hinge starts from rest and rotates with...Ch. 10 - A wheel starts from rest and rotates with constant...Ch. 10 - Prob. 6PCh. 10 - Prob. 7PCh. 10 - A machine part rotates at an angular speed of...Ch. 10 - A dentists drill starts from rest. After 3.20 s of...Ch. 10 - Why is the following situation impossible?...Ch. 10 - Prob. 11PCh. 10 - The tub of a washer goes into its spin cycle,...Ch. 10 - Prob. 13PCh. 10 - Review. Consider a tall building located on the...Ch. 10 - Prob. 15PCh. 10 - Prob. 16PCh. 10 - A discus thrower (Fig. P10.9) accelerates a discus...Ch. 10 - Figure P10.18 shows the drive train of a bicycle...Ch. 10 - A wheel 2.00 m in diameter lies in a vertical...Ch. 10 - A car accelerates uniformly from rest and reaches...Ch. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Review. A small object with mass 4.00 kg moves...Ch. 10 - Find the net torque on the wheel in Figure P10.14...Ch. 10 - Prob. 28PCh. 10 - An electric motor turns a flywheel through a drive...Ch. 10 - A grinding wheel is in the form of a uniform solid...Ch. 10 - Prob. 31PCh. 10 - Review. A block of mass m1 = 2.00 kg and a block...Ch. 10 - Prob. 33PCh. 10 - Prob. 34PCh. 10 - Prob. 35PCh. 10 - Prob. 36PCh. 10 - A potters wheela thick stone disk of radius 0.500...Ch. 10 - Imagine that you stand tall and turn about a...Ch. 10 - Prob. 39PCh. 10 - Two balls with masses M and m are connected by a...Ch. 10 - Prob. 41PCh. 10 - Following the procedure used in Example 10.7,...Ch. 10 - Three identical thin rods, each of length L and...Ch. 10 - Rigid rods of negligible mass lying along the y...Ch. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - A war-wolf or trebuchet is a device used during...Ch. 10 - Prob. 48PCh. 10 - Big Ben, the nickname for the clock in Elizabeth...Ch. 10 - Consider two objects with m1 m2 connected by a...Ch. 10 - The top in Figure P10.51 has a moment of inertia...Ch. 10 - Prob. 52PCh. 10 - Prob. 53PCh. 10 - Prob. 54PCh. 10 - Review. An object with a mass of m = 5.10 kg is...Ch. 10 - This problem describes one experimental method for...Ch. 10 - A uniform solid disk of radius R and mass M is...Ch. 10 - Prob. 58PCh. 10 - Prob. 59PCh. 10 - Prob. 60PCh. 10 - (a) Determine the acceleration of the center of...Ch. 10 - A smooth cube of mass m and edge length r slides...Ch. 10 - Prob. 63PCh. 10 - A tennis ball is a hollow sphere with a thin wall....Ch. 10 - Prob. 65PCh. 10 - Prob. 66APCh. 10 - Prob. 67APCh. 10 - Prob. 68APCh. 10 - Prob. 69APCh. 10 - Prob. 70APCh. 10 - Review. A mixing beater consists of three thin...Ch. 10 - Prob. 72APCh. 10 - Prob. 73APCh. 10 - Prob. 74APCh. 10 - Prob. 75APCh. 10 - Prob. 76APCh. 10 - Review. As shown in Figure P10.77, two blocks are...Ch. 10 - Review. A string is wound around a uniform disk of...Ch. 10 - Prob. 79APCh. 10 - Prob. 80APCh. 10 - Prob. 81APCh. 10 - Review. A spool of wire of mass M and radius R is...Ch. 10 - A solid sphere of mass m and radius r rolls...Ch. 10 - Prob. 84APCh. 10 - Prob. 85APCh. 10 - Review. A clown balances a small spherical grape...Ch. 10 - A plank with a mass M = 6.00 kg rests on top of...Ch. 10 - Prob. 88CPCh. 10 - Prob. 89CPCh. 10 - Prob. 90CPCh. 10 - A spool of thread consists of a cylinder of radius...Ch. 10 - A cord is wrapped around a pulley that is shaped...Ch. 10 - Prob. 93CPCh. 10 - A uniform, hollow, cylindrical spool has inside...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY