From the given set of conditions the best condition that the given CO 2 gas will deviate from its ideal gas behavior should be determined. Concept introduction: Ideal gas Equation: Any gas is described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained. It is referred as ideal gas equation. V ∝ nT P V = R nT P PV = nRT where, n = molesofgas P = pressure T = temperature R = gas constant Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties. At lower temperature and at high pressures the gas tends to deviate and behave like real gases. Boyle’s Law: At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume. Charles’s Law: At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature. Avogadro’s Hypothesis: Two equal volumes of gases with same temperature and pressure conditions tends to have same number of molecules with it.
From the given set of conditions the best condition that the given CO 2 gas will deviate from its ideal gas behavior should be determined. Concept introduction: Ideal gas Equation: Any gas is described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained. It is referred as ideal gas equation. V ∝ nT P V = R nT P PV = nRT where, n = molesofgas P = pressure T = temperature R = gas constant Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties. At lower temperature and at high pressures the gas tends to deviate and behave like real gases. Boyle’s Law: At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume. Charles’s Law: At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature. Avogadro’s Hypothesis: Two equal volumes of gases with same temperature and pressure conditions tends to have same number of molecules with it.
Interpretation: From the given set of conditions the best condition that the given CO2 gas will deviate from its ideal gas behavior should be determined.
Concept introduction:
Ideal gas Equation:
Any gas is described by using four terms namely pressure, volume, temperature and the amount of gas. Thus combining three laws namely Boyle’s, Charles’s Law and Avogadro’s Hypothesis the following equation could be obtained. It is referred as ideal gas equation.
V ∝nTPV = RnTPPV = nRTwhere,n = molesofgasP = pressureT = temperatureR = gas constant
Under some conditions gases don not behave like ideal gas that is they deviate from their ideal gas properties. At lower temperature and at high pressures the gas tends to deviate and behave like real gases.
Boyle’s Law:
At given constant temperature conditions the mass of given ideal gas in inversely proportional to its volume.
Charles’s Law:
At given constant pressure conditions the volume of ideal gas is directly proportional to the absolute temperature.
Avogadro’s Hypothesis:
Two equal volumes of gases with same temperature and pressure conditions tends to have same number of molecules with it.
Choose the option that is decreasing from biggest to smallest.
Group of answer choices:
100 m, 10000 mm, 100 cm, 100000 um, 10000000 nm
10000000 nm, 100000 um, 100 cm, 10000 mm, 100 m
10000000 nm, 100000 um, 10000 mm, 100 cm, 100 m
100 m, 100 cm, 10000 mm, 100000 um, 10000000 nm
Q1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use
curved arrows to show the electron movement.
(b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use
curved arrows to show the electron movement.
Which is NOT the typical size of a bacteria?
1000 nm
0.001 mm
0.01 mm
1 um
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell