The molar mass of the unknown gas should be determined by using the given condition that the gas effuses at one third rate as fast as that of helium gas. Concept introduction: Effusion: The movement of gas particles through a small hole is defined as effusion. The rate of effusion for a gas is inversely proportional to the square root of the mass of gas particles. The root mean square velocity μ is defined as the measure of velocity of particle in gas. It is the method to determine the single velocity value for particles. Root mean square velocity can be determined, μ r m s = ( 3 R T M ) 1 / 2 (1) ( gas constant ) R = 8 . 3 1 4 J K m o l M = M o l a r m a s s Molar mass: The molar mass of a substance is determined by dividing the given mass of substance by the amount of the substance.
The molar mass of the unknown gas should be determined by using the given condition that the gas effuses at one third rate as fast as that of helium gas. Concept introduction: Effusion: The movement of gas particles through a small hole is defined as effusion. The rate of effusion for a gas is inversely proportional to the square root of the mass of gas particles. The root mean square velocity μ is defined as the measure of velocity of particle in gas. It is the method to determine the single velocity value for particles. Root mean square velocity can be determined, μ r m s = ( 3 R T M ) 1 / 2 (1) ( gas constant ) R = 8 . 3 1 4 J K m o l M = M o l a r m a s s Molar mass: The molar mass of a substance is determined by dividing the given mass of substance by the amount of the substance.
Solution Summary: The author explains that the molar mass of the unknown gas is determined by using the given condition that it effuses at one third rate as fast as that of helium gas.
Interpretation: The molar mass of the unknown gas should be determined by using the given condition that the gas effuses at one third rate as fast as that of helium gas.
Concept introduction:
Effusion:
The movement of gas particles through a small hole is defined as effusion. The rate of effusion for a gas is inversely proportional to the square root of the mass of gas particles.
The root mean square velocity μ is defined as the measure of velocity of particle in gas. It is the method to determine the single velocity value for particles.
Root mean square velocity can be determined,
μrms=(3RTM)1/2 (1)
(gas constant)R=8.314JKmolM=Molarmass
Molar mass: The molar mass of a substance is determined by dividing the given mass of substance by the amount of the substance.
Part IV. C6H5 CH2CH2OH is an aromatic compound which was subjected to Electron Ionization - mass
spectrometry (El-MS) analysis. Prominent m/2 values: m/2 = 104 and m/2 = 9) was obtained.
Draw the structures of these fragments.
For each reaction shown below follow the curved arrows to complete each equationby showing the structure of the products. Identify the acid, the base, the conjugated acid andconjugated base. Consutl the pKa table and choose the direciton theequilibrium goes. However show the curved arrows. Please explain if possible.
A molecule shows peaks at 1379, 1327, 1249, 739 cm-1. Draw a diagram of the energy levels for such a molecule. Draw arrows for the possible transitions that could occur for the molecule.
In the diagram imagine exciting an electron, what are its various options for getting back to the ground state?
What process would promote radiation less decay?
What do you expect for the lifetime of an electron in the T1 state?
Why is phosphorescence emission weak in most substances?
What could you do to a sample to enhance the likelihood that phosphorescence would occur over radiationless decay?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell