In each of the following groups of substances, pick the one that has the given property. Justify your answer.
a. highest boiling point: HBr, Kr, or Cl2
b. highest freezing point: H2O, NaCl, or HF
c. lowest vapor pressure at 25°C: Cl2, Br2, or I2
d. lowest freezing point: N2, CO, or CO2
e. lowest boiling point: CH4, CH3CH3, or CH3CH2CH3
f. highest boiling point: HF, HCl, or HBr
g.
(a)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 41E
The compound with highest boiling point is
Explanation of Solution
Identify the compound which has highest boiling point and justify it.
Analyze why the other compounds don’t have the highest boiling point and justify the same.
The compounds other than
The compound with the highest boiling point is identified and the same is justified.
(b)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 41E
The compound with highest freezing point or melting point is
Explanation of Solution
Identify the compound which has highest melting point and justify it.
Analyze why the other compounds don’t have the highest melting point and justify the same.
The compounds other than
Hence
The compound with the highest melting point is identified and the same is justified.
(c)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 41E
The compound with lowest vapor pressure is
Explanation of Solution
Identify the compound that has the lowest vapor pressure and justify it.
A boiling liquid partly vaporizes and the vaporized molecules do exist in equilibrium with the liquid molecules. The pressure exerted by the vaporized molecules is termed as vapor pressure. If the intermolecular forces are weak the molecules are not held together strongly that they are able to move freely. The pressure exerted by the molecules is directly proportional to the free movement of molecules. If the intermolecular forces are strong, the movement of the molecules is restricted to some extent that the pressure exerted by them will be low. Thus increase in the strength of intermolecular forces in a substance decreases its vapor pressure.
Analyze why the other compounds don’t have the lowest vapor pressure and justify the same.
The intermolecular forces exist in them are not of high strength.
Both
The compound with the lowest vapor pressure is identified and the same is justified.
(d)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 41E
The compound with lowest freezing point is
Explanation of Solution
Identify the compound that has the lowest freezing point and justify it.
Analyze why the other compounds don’t have the lowest freezing point and justify the same.
The compounds other than
The other compounds
The compound with the lowest freezing point is identified and the same is justified.
(e)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 41E
The compound with lowest boiling point is
Explanation of Solution
Identify the compound which has lowest boiling point and justify it.
Analyze why the other compounds don’t have the lowest boiling point and justify the same.
The compounds other than
The compound with the lower boiling point is identified and the same is justified.
(f)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 41E
The compound with highest boiling point is
Explanation of Solution
Identify the compound which has highest boiling point and justify it.
Analyze why the other compounds don’t have the highest boiling point and justify the same.
The compounds other than
All the compounds in the given set are polar covalent compounds. Among the given compounds
The compound with the highest boiling point is identified and the same is justified.
(g)
Interpretation:
From the given set of compounds, the compounds with highest boiling point, highest freezing point, lowest vapor pressure, lowest freezing point and lowest boiling point have to be identified and the same has to be justified.
Concept Introduction:
Matter is generally classified into three distinct categories - solid state, liquid state, gaseous state. In all of these three states of matter, the constituents (molecules or ions) of the matter do possess forces between them which are not the same in each state. These forces are called intermolecular forces.
The intermolecular forces are relatively strong in the solids than liquids and weaker in the gaseous substances. This variation influences many of the properties of all the three distinct states of the matter.
If the strength of intermolecular force is high in a substance then its melting point, freezing point, boiling point will be high and the vapor pressure will be low.
The strength of intermolecular forces is,
Answer to Problem 41E
The compound with the lowest vapor pressure is
Explanation of Solution
Identify the compound which has lowest vapor pressure and justify it.
The compound
A boiling liquid partly vaporizes and the vaporized molecules do exist in equilibrium with the liquid molecules. The pressure exerted by the vaporized molecules is termed as vapor pressure. If the intermolecular forces are weak the molecules are held together loosely. Then they exhibit faster movement. The more the free movement of molecules the more will be the pressure exerted by them. If the intermolecular forces are strong, the movement of the molecules is restricted to some extent that the pressure exerted by them will be low. Thus increase in the strength of intermolecular forces in a substance decreases its vapor pressure.
Analyze why the other compounds don’t have the lowest vapor pressure and justify the same.
The intermolecular forces exist in them are not of high strength.
In
The compound with the lowest vapor pressure is identified and the same is justified.
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry: AP Edition - Package
- Try: Draw the best Lewis structure showing all non-bonding electrons and all formal charges if any: (CH3)3CCNO NCO- HN3 [CH3OH2]*arrow_forwardWhat are the major products of the following reaction? Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.arrow_forwardZeolites. State their composition and structure. Give an example.arrow_forward
- Don't used hand raiting and show all reactionsarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardIX) By writing the appropriate electron configurations and orbital box diagrams briefly EXPLAIN in your own words each one of the following questions: a) The bond length of the Br2 molecule is 2.28 Å, while the bond length of the compound KBr is 3.34 Å. The radius of K✶ is 1.52 Å. Determine the atomic radius in Å of the bromine atom and of the bromide ion. Br = Br b) Explain why there is a large difference in the atomic sizes or radius of the two (Br and Br). Tarrow_forward
- When 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.arrow_forwardWhen 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol. Which experimental number must be initialled by the Lab TA for the first run of Part 1 of the experiment? a) the heat capacity of the calorimeter b) Mass of sample c) Ti d) The molarity of the HCl e) Tfarrow_forwardPredict products for the Following organic rxn/s by writing the structurels of the correct products. Write above the line provided" your answer D2 ①CH3(CH2) 5 CH3 + D₂ (adequate)" + 2 mited) 19 Spark Spark por every item. 4 CH 3 11 3 CH 3 (CH2) 4 C-H + CH3OH CH2 CH3 + CH3 CH2OH 0 CH3 fou + KMnDy→ C43 + 2 KMn Dy→→ C-OH ") 0 C-OH 1110 (4.) 9+3 =C CH3 + HNO 3 0 + Heat> + CH3 C-OH + Heat CH2CH3 - 3 2 + D Heat H 3 CH 3 CH₂ CH₂ C = CH + 2 H₂ → 2 2arrow_forward
- When 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.arrow_forwardQ6: Using acetic acid as the acid, write the balanced chemical equation for the protonation of the two bases shown (on the -NH2). Include curved arrows to show the mechanism. O₂N- O₂N. -NH2 -NH2 a) Which of the two Bronsted bases above is the stronger base? Why? b) Identify the conjugate acids and conjugate bases for the reactants. c) Identify the Lewis acids and bases in the reactions.arrow_forwardQ5: For the two reactions below: a) Use curved electron-pushing arrows to show the mechanism for the reaction in the forward direction. Redraw the compounds to explicitly illustrate all bonds that are broken and all bonds that are formed. b) Label Bronsted acids and bases in the left side of the reactions. c) For reaction A, which anionic species is the weakest base? Which neutral compound is the stronger acid? Is the forward or reverse reaction favored? d) Label Lewis acids and bases, nucleophiles and electrophiles in the left side of the reactions. A. 용 CH3OH я хон CH3O OH B. HBr CH3ONa NaBr CH3OHarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER