Rubidium chloride has the sodium chloride structure at normal pressures but assumes the cesium chloride structure at high pressures. (See Exercise 69.) What ratio of densities is expected for these two forms? Does this change in structure make sense on the basis of simple models? The ionic radius is 148 pm for Rb+ and 181 pm for CI−.
Interpretation:
Rubidium chloride has two structures at different pressures. The ratio of the density of these two forms has to be determined.
Concept introduction:
In packing of atoms or molecules of a solid, the atoms/molecules are imagined as spheres. The two major types of close packing of the spheres in the crystal are – hexagonal close packing and cubic close packing. Cubic close packing structure has face-centered cubic (FCC) unit cell. FCC unit cell has 4 units of atom/molecule per unit cell. In FCC unit cell the components touch along the edge of the cubic unit cell. A simple cubic unit cell has 1 unit of atom/molecule per unit cell. In this unit cell, the components touch along the body diagonal of the unit cell.
Answer to Problem 146CP
Answer
The ratio of the density of the two forms of Rubidium chloride is 1.30.
Explanation of Solution
Explanation
Calculate the volume of unit cell of
At normal pressure structure of Rubidium chloride is similar to that of Sodium chloride. The ionic radius of the
Calculate the mass and density of unit cell of
Each FCC unit cell contains 4
Calculate the volume of unit cell of
At high pressure structure of Rubidium chloride is similar to that of Cesium chloride. The ionic radius of the
Calculate the mass and density of unit cell of
Each simple cubic unit cell contains one
Compare the density of two forms of Rubidium chloride.
Let density of
Let density of
The ratio of densities of the two forms of
Conclusion
The structure of
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry: AP Edition - Package
- Don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forward↑ 0 Quiz List - RCC430M_RU05 X Aktiv Learning App × Qdraw resonance structure ×Q draw resonance structure xb My Questions | bartleby ×+ https://app.aktiv.com Draw a resonance structure of pyrrole that has the same number of pi bonds as the original structure. Include all lone pairs in your structure. + N H a 5 19°F Cloudy Q Search Problem 12 of 15 Atoms, Bonds and Rings Charges and Lone Pairs myhp हजु Undo Reset Remove Done Submit Drag To Pan 2:15 PM 1/25/2025arrow_forward
- Briefly indicate the structure and bonding of silicates.arrow_forward4 Part C Give the IUPAC name and a common name for the following ether: Spell out the full names of the compound in the indicated order separated by a comma.arrow_forwardTry: Draw possible resonance contributing structures for the following organic species: CH3CH2NO2 [CH2CHCH2] [CH2CHCHO] [CH2CHCH2] [CH2CHNH2]arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning