Laboratory Manual for Introductory Circuit Analysis
13th Edition
ISBN: 9780133923780
Author: Robert L. Boylestad, Gabriel Kousourou
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 37P
Given the expression
a. Determine Uc at t = 1 ms.
b. Determine Uc at t = 20 ms.
c. Find the time t for Uc to reach 100 mV.
d. Find the time t for Uc to reach 138 mV.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Draw the fabrication layers of a transistor with MS junction (Schottky junction).
Q: Draw the fabrication layers of a transistor with MS junction (Schottky
junction).
+
C/E,
4
TA
b
IA
+ 2V
C/E
2
+1
-
C
+ V3 -
C/EU
-
ча
- V4 +
e
+
/E3 V2
12V
a
(a) Find currents L, L2 and is
(b)
Find Voltages V, V2, V3 and V4
-
2A
CIEG
For each circuit element and the two sources state whether they are
ABSORBING SUPPLYING pores and how much poner 13 absorbed
or supplied.
+
Chapter 10 Solutions
Laboratory Manual for Introductory Circuit Analysis
Ch. 10 - a. Find the electric field strength at a point 1 m...Ch. 10 - The electric field strength is 72 newtons/coulomb...Ch. 10 - Find the capacitance of a parallel plate capacitor...Ch. 10 - How much charge is deposited on the plates of a...Ch. 10 - a. Find the electric field strength between the...Ch. 10 - A 6.8 pF parallel plate capacitor has 160 C of...Ch. 10 - Find the capacitance of a parallel plate capacitor...Ch. 10 - Repeat Problem 7 if the dielectric is...Ch. 10 - Find the distance in mils between the plates of a...Ch. 10 - The capacitance of a capacitor with a dielectric...
Ch. 10 - The plates of a parallel plate capacitor with a...Ch. 10 - A parallel plate air capacitor has a capacitance...Ch. 10 - Find the maximum voltage that can be applied...Ch. 10 - Find the distance in micrometers between the...Ch. 10 - A 22 pF capacitor has -200 ppm/C at room...Ch. 10 - What is the capacitance of a small teardrop...Ch. 10 - A large, flat, mica capacitor is labeled 471F....Ch. 10 - A small, flat, disc ceramic capacitor is labeled...Ch. 10 - For the circuit in Fig. 10.94, composed of...Ch. 10 - Repeat Problem 19 for R=100k, and compare the...Ch. 10 - For the circuit in Fig. 10.95, composed of...Ch. 10 - For the circuit in Fig. 10.96, composed of...Ch. 10 - Prob. 23PCh. 10 - The voltage across a 10 F capacitor in a series...Ch. 10 - For the R-C circuit in Fig. 10.97. composed of...Ch. 10 - For the network in Fig. 10.98. composed of...Ch. 10 - For the network in Fig.10.99.composed of standard...Ch. 10 - The 1000 F capacitor in Fig.10.100 is charged to...Ch. 10 - The capacitor in Fig. 10.101 is initially charged...Ch. 10 - Repeat Problem 29 if the initial charge is -40V.Ch. 10 - Repeat Problem 29 if the initial charge is +40V.Ch. 10 - The capacitor in Fig. 10.102 is initially charged...Ch. 10 - The capacitor in Fig. 10.103 is initially charged...Ch. 10 - The capacitor in Fig. 10.104 is initially charged...Ch. 10 - The capacitors of Fig. 10.105 are initially...Ch. 10 - Repeat Problem 35 if a 10 k resistor is placed in...Ch. 10 - Given the expression vc=140mV(1-e-t/2ms) a....Ch. 10 - For the automobile circuit of Fig. 10.106. VL must...Ch. 10 - Design the network in Fig.10.107 such that the...Ch. 10 - For the circuit in Fig. 10.108: a. Find the time...Ch. 10 - For the system in Fig. 10.109. using a DMM with a...Ch. 10 - For the circuit in Fig. 10.110: a. Find the...Ch. 10 - The capacitor in Fig. 10.111 is initially charged...Ch. 10 - The capacitors in Fig. 10.112 are initially...Ch. 10 - For the circuit in Fig. 10.113: a. Find the...Ch. 10 - The capacitor in Fig. 10.114 is initially charged...Ch. 10 - For the system in Fig. 10.115, using a DMM with a...Ch. 10 - Find the waveform for the average current if the...Ch. 10 - Find the waveform for the average current if the...Ch. 10 - Given the waveform in Fig.10.118 for the current...Ch. 10 - Find the total capacitance CT for the network in...Ch. 10 - Find the total capacitance CT for the network in...Ch. 10 - Find the steady-state voltage across and the...Ch. 10 - Find the steady-state voltage across and the...Ch. 10 - For the configuration in Fig. 10.123, determine...Ch. 10 - For the configuration in Fig.10.124, determine the...Ch. 10 - Find the energy stored by a 120 pF capacitor with...Ch. 10 - If the energy stored by a 6 F capacitor is 1200 J,...Ch. 10 - For the network in Fig. 10.125, determine the...Ch. 10 - An electronic flashgun has a 1000 F capacitor that...Ch. 10 - Using PSpice or Multisim, verify the results in...Ch. 10 - Using the initial condition operator, verify the...Ch. 10 - Using PSpice or Multisim, verify the results for...Ch. 10 - Using PSpice or Multisim, verify the results in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please solve part a, b and c Also, find the impulse response g(t) for the systemarrow_forwardConsider the lateral dynamics of a vectored thrust aircraft as described in Example 3.12. Show that the dynamics can be described using the following block diagram: Ꮎ r ալ -mg Σ J82 ע 1 X ms² + cs Use this block diagram to compute the transfer functions from u₁ to 0 and x and show that they satisfy Нои r Js² - mgr Js²' Hau₁ Js2 (ms2+cs)arrow_forwardConsider the system dx ax+u. dt Compute the exponential response of the system and use this to derive the transfer function from u to x. Show that when s = a, a pole of the transfer function, the response to the exponential input u(t) = est is x(t) = eat x(0) + teat. For solving the system with u = eat eat you can't use the transfer function because the denominator is zero. Try using the convolution integral solution with initial conditions set as x(t) = eat x (0) + fo g(t − T)u(T)dT - g(t) is the impulse response of the system.arrow_forward
- dny dn-1y dn-1u dn-24 +a1 + + Any = bi +b₂- + +bnu. dtn dtn-1 dtn-1 dtn-2 a) Let be a root of the characteristic equation 1 sn+a1sn- + +an = : 0. Show that if u(t) = 0, the differential equation has the solution y(t) = e\t. b) Let к be a zero of the polynomial b(s) = b₁s-1+b2sn−2+ Show that if the input is u(t) equation that is identically zero. = .. +bn. ekt, then there is a solution to the differentialarrow_forwarddny dn-1y dn-1u dn-24 +a1 + + Any = bi +b₂- + +bnu. dtn dtn-1 dtn-1 dtn-2 a) Let be a root of the characteristic equation 1 sn+a1sn- + +an = : 0. Show that if u(t) = 0, the differential equation has the solution y(t) = e\t. b) Let к be a zero of the polynomial b(s) = b₁s-1+b2sn−2+ Show that if the input is u(t) equation that is identically zero. = .. +bn. ekt, then there is a solution to the differentialarrow_forwardFor step a), use equations (2) to find the equation for the input impedance equations (2) are V1 = jwL1I1 + jwMI2 and V2 = jwMI1 + jwL2I2 equation for the input impedance: Z1 = V1/I1 = jwL1 + (wM)2/(jwL2 + ZL)arrow_forward
- L (a) Find currents i, and b₂ 2 2 (b) Find the dependent source voltage given as Find voltages V, and (c) V₂ 5i2 (d) For each circuit element in the circuit and the two Sources, state whether they are ABSORBING OF SUPPYING Power and how much power is absorbed or Supplied. + V - 5A +lov- C/E₂ + C/E4 Vz い 5+2 + 1A C/E 5V + シュ 2A + 10Varrow_forward4) A circuit is given as shown. (a) Find currents i, and i2. (b) Find the dependent source voltage given as 5i2 (c) Find voltages V, and V₂ 2 (d) For each circuit element in the circuit and the two Sources, State whether they are ABSORBING, OF SUPPLYING POWER and how much power is absorbed or supplied. + 10V - + 4 CIES C/E + V L₁ 4 1A Y T5A GE -5V + CIES iz 2A 2 52 2 +arrow_forwardDetermine the eigenvalues and eigenvectors of using A = ( 1 -3 3 3 -5 3 6-64 Gauss eliminationarrow_forward
- 5) A circuit is given as shown (a) Find currents i₁, L2 and is . (6) Find voltages V, V2, V3 and Vy (c) For each circuit element in the circuit and the two sources, state whether they are ABSORBING SUPPLYING POWER and how much power is absorbed or supplied. + V₁ CIE, 1A +2V- C/E AS 1A + - 4A Vy+ CES CIES 2A4 + IOV +- + + V2 1 434 12V GVarrow_forwardDetermine the eigenvalues and eigenvectors of using Gauss A = -3 322 20 132 -3° 10 -2 4 eliminationarrow_forwardDetermine the eigenvalues and eigenvectors of 1-3 3 A = 3-53 6-64arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Introduction to Two-Port Networks; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=ru2ItcD6unI;License: Standard Youtube License