Concept explainers
a. Find the electric field strength at a point 1 m from a charge of 4
b. Find the electric field strength at a point 1 mm [1/1000 the distance of part (a)] from the same charge as part (a) and compare results.
(a)
The electric field strength at a point
Answer to Problem 1P
The electric field strength at a point
Explanation of Solution
Given:
The distance is
The charge is
Concept used:
Expression for the electric filed due to a point charge.
Here,
Calculation:
Substitute
Conclusion:
Thus, the electric field strength at a point
(b)
The electric field strength at a point
Answer to Problem 1P
The electric field strength at point
Explanation of Solution
Given:
The distance is
The charge is
Calculation:
Substitute
Therefore, the electric field strength at a point
Conclusion:
Thus, the electric field strength at point
Want to see more full solutions like this?
Chapter 10 Solutions
Laboratory Manual for Introductory Circuit Analysis
Additional Engineering Textbook Solutions
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Vector Mechanics for Engineers: Statics and Dynamics
Starting Out With Visual Basic (8th Edition)
Vector Mechanics for Engineers: Statics
Mechanics of Materials (10th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
- Derive the numerical relationship between the line and phase currents for a balanced three-phase delta connected load. Three coils are connected in delta to a three-phase, three-wire, 400 V, 50 Hz supply and take a line current of 5 A 0.8 power factor lagging. Calculate the resistance and inductance of the coils. If the coils are star-connected to the same supply, calculate the line current and the total power. Calculate the line cur rents if one coil becomes open-circuited when the coils are connected in star. Ans: 110.7 Ω, 0.264 H; 1.67 A, 926 W; 1.445 A, 1.445 A, 0arrow_forwardDerive, for both star- and delta-connected systems, an expression for the total power input for a balanced three-phase load in terms of line voltage, line current and power factor. The star-connected secondary of a transformer supplies a delta-connected motor taking a power of 90 kW at a lagging power factor of 0.9. If the volt age between lines is 600 V, calculate the current in the transformer winding and in the motor winding. Draw circuit and phasor diagrams, properly labelled, showing all voltages and currents in the transformer secondary and the motor. ANS: . 96.2 A, 55.6 Aarrow_forwardDeduce the relationship between the phase and the line voltages of a three-phase star-connected generator. If the phase voltage of a three-phase star-connected generator is 200 V, what will be the line voltages: (a) when the phases are correctly connected; (b) when the connections to one of the phases are reversed? ans: 346 V; 346 V, 200 V, 200 Varrow_forward
- Q2: Given a discrete sequence x(n) = [1,-1,2,4, 1, 3,-1,1] and its spectrum X(k): i. Show that: X(k) =G(k)+WH(k) k=0,1,2,3,4,5,6,7 where G(k) = DFT[g(n)] and H(k) = DFT[h(n)], g(n) and h(n) are even and odd components of x(n) respectively. ii. Compute G(k) and H(k) using the method of computation of DFTS of two real sequences. (15 marks)arrow_forwardQ2: Given a discrete sequence x(n) = [1,-1,2,4, 1, 3,-1,1] and its spectrum X(k): i. Show that: X(k) = G(k)+WH(k) k = 0,1,2,3,4,5,6,7 where G(k) = DFT[g(n)] and H(k) = DFT[h(n)], g(n) and h(n) are even and odd components of x(n) respectively. ii. Compute G(k) and H(k) using the method of computation of DFTS of two real sequences.arrow_forwardQ1 .For the unity feedback control system shown below, discuss the stability using Bode Plotarrow_forward
- Q4: Given a discrete data array x(n₁, n2) defined as: 31 x(n₁, n₂) = 1 1 2 2 11 2. (a) Compute the two-dimensional (2-D) DFT X(k₁, k₂), using row-column (RC) algorithm. (b) Repeat part (a) using vector-radix (VR) FFT algorithm.arrow_forwardDO NOT USE AI OR CHATGPT NEED HANDWRITTEN SOLUTIONarrow_forwardCompute the Laplace transform of the following time domain function using only L.T. properties: f(t) = (t-3)eu(t − 2)arrow_forward
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning