Chemistry In Focus
7th Edition
ISBN: 9781337399692
Author: Tro, Nivaldo J.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 37E
Interpretation Introduction
Interpretation:
The surface area of the solar cell required to light a bulb is to be calculated.
Concept Introduction:
Power input on the solar cells is the total active area of the solar cells multiplied by solar power. The percent of the input power that is converted to output power by a solar cell is called its efficiency. Percent efficiency of a solar cell is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a cloudless day in which the sun shines down across the united states. if 2659 KJ of energy reaches a square meter (m^2) of the united states in one hour, how much total solar energy reaches the entire united states per hour? the entire area of the united states is 9,158.960 km^2.
The total power used by humans worldwide is approximately 15 TW (terawatts). Sunlight striking Earth provides 1.336 kW
per square meter (assuming no clouds). The surface area of Earth is approximately 197,000,000 square miles.
How much of Earth's surface would we need to cover with solar energy collectors to power the planet for use by all humans?
Assume that the solar energy collectors can only convert 10 % of the available sunlight into useful power.
Electrical power is commonly measured in watts (W) or in kilowatts (kW). A commercial solar panel generates about 0.10 watts
per square inch of surface area. Based on this, how many kilowatts of power could be generated by a residential solar panel array
with a surface area of 621 ft2?
amount of
power:
kW
Chapter 10 Solutions
Chemistry In Focus
Ch. 10 - Prob. 10.1YTCh. 10 - Prob. 10.2YTCh. 10 - Prob. 1SCCh. 10 - Prob. 1ECh. 10 - Explain why hydroelectric power and wind power are...Ch. 10 - Prob. 3ECh. 10 - Prob. 4ECh. 10 - Prob. 5ECh. 10 - Prob. 6ECh. 10 - Prob. 7E
Ch. 10 - Prob. 8ECh. 10 - Prob. 9ECh. 10 - Prob. 10ECh. 10 - Prob. 11ECh. 10 - Prob. 12ECh. 10 - Prob. 13ECh. 10 - Prob. 14ECh. 10 - Prob. 15ECh. 10 - How does a geothermal power plant generate...Ch. 10 - Prob. 17ECh. 10 - Prob. 18ECh. 10 - Prob. 19ECh. 10 - Prob. 20ECh. 10 - Prob. 21ECh. 10 - Prob. 22ECh. 10 - Prob. 23ECh. 10 - Prob. 24ECh. 10 - Prob. 25ECh. 10 - Prob. 26ECh. 10 - Prob. 27ECh. 10 - Prob. 28ECh. 10 - Prob. 29ECh. 10 - Prob. 30ECh. 10 - Prob. 31ECh. 10 - Prob. 32ECh. 10 - Prob. 33ECh. 10 - Prob. 34ECh. 10 - Prob. 35ECh. 10 - Prob. 36ECh. 10 - Prob. 37ECh. 10 - Prob. 38ECh. 10 - Prob. 42ECh. 10 - Prob. 43E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Why do the perovskite solar cells be sensitive to heat, air and moisture and how do this affect its efficiency?arrow_forwardConsider a cloudless day on which the sun shines down across the United States. If 2247 kJ of energy reaches a square meter (m2) of the United States in one hour, how much total solar energy reaches the entire United States per hour? The entire area of the United States is 9,158,960 km². kJ/h solar energy per hour:arrow_forwardThe use of solar power illustrates which of the following green chemistry principles? Design for less waste Design for energy efficiency Atom economy Design for less hazards Design using benign chemicalsarrow_forward
- The sun supplies about 1 kilowatt(s) of energy for each square meter of surface area (1 kW/m2kW/m2, where a watt = 1 J/sJ/s). Plants produce the equivalent of about 0.19 gg of sucrose (C12H22O11C12H22O11) per hour per square meter.arrow_forwardDefine the terms renewable and nonrenewable as applied to energy resources. Which of the following energy resources are renewable: solar energy, coal, natural gas, geothermal energy, wind power?arrow_forwardAssume that electricity costs 15 cents per kilowatt- hour. Calculate the monthly cost of operating each of the following: a 100 W light bulb, 5 h/day a 600 W refrigerator, 24 h/day a 12,000 W electric range, 1 h/day a 1000 W toaster, 10 min/dayarrow_forward
- Write the Lewis structures and give the electron-region geometry, molecular geometry, and bond angles, and the hybridization of the central atom of these polyatomic ions and molecules. (a) BrF2+ (b) OCCl2 (c) CH3+ (d) SeCS (e) CH3arrow_forwardCoal with a mass analysis of 80% carbon, 3% sulfur, 17% noncombustible ash burns completely with 120% of theoretical air. Determine the amount of SO2 produced, in kg SO2 per kg of coal.arrow_forwardWhat are 2 materials the US EPA says make sense economically and environmentally to recycle? O paper and plastic O paper and aluminum O plastic and glass Oglass and paint O all of these make sense economically and environmentally to recycle.arrow_forward
- . Most people find waterbeds uncomfortable unless the water temperature is maintained at about 85 °F. Unless it is heated, a waterbed that contains 892 L of water cools from 85 °F to 72 °F in 24 hours. Estimate the amount of electrical energy required over 24 hours, in kWh, to keep the bed from cooling. Note that 1 kilowatt-hour (kWh) = 3.6 ×× 106 J, and assume that the density of water is 1.0 g/mL (independent of temperature). What other assumptions did you make? How did they affect your calculated result (i.e., were they likely to yield “positive” or “negative” errors)?arrow_forwardCarbon dioxide emissions associated with a one-night stay in a hotel room are calculated at 29.53 kg of CO2 per room day for an average hotel. The 200 rooms of your hotel are all occupied for two days during a college football game. How much CO2 did the guests and hotel release into the atmosphere?arrow_forwardHw.60.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY