Chemistry In Focus
7th Edition
ISBN: 9781337399692
Author: Tro, Nivaldo J.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 27E
Interpretation Introduction
Interpretation:
The percent efficiency of the given PV cell is to be calculated.
Concept Introduction:
The percent of the input power that is converted into the output power by a PV cell is called its efficiency.
Percent efficiency of a PV cell is 100 multiplied by the ratio of power out and power in.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In Table 7.2 (Energy Expenditure of a 180-Pound Person During Selected Exercises)Links to an external site. in the course textbook, it is claimed that a person climbing stairs expends about 1200 kcal/hr. The maximum human power output for short-term effort is approximately 1200 W (remember 1 W = 1 J/s).
Is the value of 1200 kcal/hr a reasonable estimate of average power output by a person climbing stairs?
Note: Power is defined as energy per time, so 1200 kcal/hr has units of energy per time. A watt is the SI unit of power and has units of J/s. So to approach this problem you will need to convert one power measurement into the other.
Group of answer choices
It comes out to be 1400 W, which is too high
It is impossible to convert kcals into joules since one is an SI unit and the other isn't
It comes out to be 1.395 x 103 W, so the value in the table seems reasonable
It comes out to be 960 W, that is too high
It comes out to be 1.4 W and that is too low
What are the pros and cons of the utilization of hydrogen gas as a source of energy? What are the obstacles that have prevented its widespread use?
The sun supplies about 1 kilowatt(s) of energy for each square meter of surface area (1 kW/m2kW/m2, where a watt = 1 J/sJ/s). Plants produce the equivalent of about 0.19 gg of sucrose (C12H22O11C12H22O11) per hour per square meter.
Chapter 10 Solutions
Chemistry In Focus
Ch. 10 - Prob. 10.1YTCh. 10 - Prob. 10.2YTCh. 10 - Prob. 1SCCh. 10 - Prob. 1ECh. 10 - Explain why hydroelectric power and wind power are...Ch. 10 - Prob. 3ECh. 10 - Prob. 4ECh. 10 - Prob. 5ECh. 10 - Prob. 6ECh. 10 - Prob. 7E
Ch. 10 - Prob. 8ECh. 10 - Prob. 9ECh. 10 - Prob. 10ECh. 10 - Prob. 11ECh. 10 - Prob. 12ECh. 10 - Prob. 13ECh. 10 - Prob. 14ECh. 10 - Prob. 15ECh. 10 - How does a geothermal power plant generate...Ch. 10 - Prob. 17ECh. 10 - Prob. 18ECh. 10 - Prob. 19ECh. 10 - Prob. 20ECh. 10 - Prob. 21ECh. 10 - Prob. 22ECh. 10 - Prob. 23ECh. 10 - Prob. 24ECh. 10 - Prob. 25ECh. 10 - Prob. 26ECh. 10 - Prob. 27ECh. 10 - Prob. 28ECh. 10 - Prob. 29ECh. 10 - Prob. 30ECh. 10 - Prob. 31ECh. 10 - Prob. 32ECh. 10 - Prob. 33ECh. 10 - Prob. 34ECh. 10 - Prob. 35ECh. 10 - Prob. 36ECh. 10 - Prob. 37ECh. 10 - Prob. 38ECh. 10 - Prob. 42ECh. 10 - Prob. 43E
Knowledge Booster
Similar questions
- Assume that electricity costs 15 cents per kilowatt- hour. Calculate the monthly cost of operating each of the following: a 100 W light bulb, 5 h/day a 600 W refrigerator, 24 h/day a 12,000 W electric range, 1 h/day a 1000 W toaster, 10 min/dayarrow_forwardDefine the terms renewable and nonrenewable as applied to energy resources. Which of the following energy resources are renewable: solar energy, coal, natural gas, geothermal energy, wind power?arrow_forward9.69 How are the roles of transmission substations and distribution substations in the electrical grid similar? How are they different?arrow_forward
- Calculating Energy Use in Kilowatt-Hours What is the yearly cost of operating a 100-W television for 2 hours per day, assuming the cost of electricity is 15 cents per kilowatt-hour?arrow_forwardWhich of the following is a renewable energy resource? (a) nuclear fusion (b) hydroelectric power (c) natural gas (d) coalarrow_forwardHow does a geothermal power plant generate electricity? What are the advantages and disadvantages of geothermal power?arrow_forward
- Petroleum is a very valuable raw material for the synthesis of polymers. What if Congress decided that petroleum must be conserved as a raw material and could not be used as fuel? What could our society do for alternate sources of energy?arrow_forwardMost people find waterbeds uncomfortable unless the water temperature is maintained at about 85 F. Unless it is heated, a waterbed that contains 892 L of water cools from 85 F to 72 F in 24 hours. Estimate the amount of electrical energy required over 24 hours, in kWh, to keep the bed from cooling. Note that 1 kilowatt-hour (kWh) = 3.6106 J, and assume that the density of water is 1.0 g/mL (independent of temperature). What other assumptions did you make? How did they affect your calculated result (i.e., were they likely to yield positive or negative errors)?arrow_forwardA company pays the electric company at a rate of $0.18 per kilowatt-hour for their power. The factory uses three ventilator fans to keep the workers safe from dust. Each fan has a 1 horsepower motor. The company runs the fans continuously 24/7. How much is the company’s energy cost per month (30 days) to operate the ventilation system?arrow_forward
- . Most people find waterbeds uncomfortable unless the water temperature is maintained at about 85 °F. Unless it is heated, a waterbed that contains 892 L of water cools from 85 °F to 72 °F in 24 hours. Estimate the amount of electrical energy required over 24 hours, in kWh, to keep the bed from cooling. Note that 1 kilowatt-hour (kWh) = 3.6 ×× 106 J, and assume that the density of water is 1.0 g/mL (independent of temperature). What other assumptions did you make? How did they affect your calculated result (i.e., were they likely to yield “positive” or “negative” errors)?arrow_forwardWhat are the renewable sources of energy that can be utilized to generate electricity?arrow_forwardAn average American consumes approximately 106 kJ of energy per day. The average life expectancy of an American is 77.9 years. How many grams of coal would need to be burned to provide enough energy to meet a person's energy demands if the efficiency of energy production from coal is 38%?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning