Foundations of Astronomy
13th Edition
ISBN: 9781305079151
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 25RQ
To determine
The difference between molecular clouds in old stars and that at present.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Place the following events in the formation of stars in the proper chronological
sequence, with the oldest first and the youngest last.
w. the gas and dust in the nebula flatten to a disk shape due to gravity
and a steadily increasing rate of angular rotation
x. a star emerges when the mass is great enough and the temperature is
high enough to trigger thermonuclear fusion in the core
y. the rotation of the nebular cloud increases as gas and dust
concentrates by gravity within the growing protostar in the center
z. some force, perhaps from a nearby supernova, imparts a rotation to a
nebular cloud
y, then z, then w, then x
z, then y, then w, then x
w, then y, then z, then x
z, then x, then w, then y
x, then z, then y, then w
MacBook Air
on
.H.
O O O O
What are the two main nuclear chains known in stars and what are they responsible for? What are the differences between both?
Don't copy from Google i need unique answer
Iron is unique among the elements in terms of its nuclear properties, and this gives it a decisive role in stellar evolution. Explain.
Chapter 10 Solutions
Foundations of Astronomy
Ch. 10 - Prob. 1RQCh. 10 - Prob. 2RQCh. 10 - Prob. 3RQCh. 10 - I am a cloud containing lots of dust, and I appear...Ch. 10 - Prob. 5RQCh. 10 - Prob. 6RQCh. 10 - Prob. 7RQCh. 10 - Prob. 8RQCh. 10 - Prob. 9RQCh. 10 - Prob. 10RQ
Ch. 10 - Prob. 11RQCh. 10 - Prob. 12RQCh. 10 - Prob. 13RQCh. 10 - Prob. 14RQCh. 10 - Why is the ISM transparent at near-infrared and...Ch. 10 - Prob. 16RQCh. 10 - Prob. 17RQCh. 10 - Prob. 18RQCh. 10 - Prob. 19RQCh. 10 - Prob. 20RQCh. 10 - Prob. 21RQCh. 10 - Prob. 22RQCh. 10 - Name two processes (or objects) that remove...Ch. 10 - Prob. 24RQCh. 10 - Prob. 25RQCh. 10 - Prob. 26RQCh. 10 - Prob. 1DQCh. 10 - Prob. 2DQCh. 10 - Prob. 3DQCh. 10 - Prob. 4DQCh. 10 - Prob. 5DQCh. 10 - Prob. 6DQCh. 10 - Prob. 1PCh. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - Prob. 4PCh. 10 - Prob. 5PCh. 10 - The number density of air in a childs balloon is...Ch. 10 - Calculate the frequency in megahertz (MHz) of the...Ch. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - Prob. 1LTLCh. 10 - Prob. 2LTLCh. 10 - Prob. 3LTLCh. 10 - Prob. 4LTLCh. 10 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Are supergiant stars also extremely massive? Explain the reasoning behind your answer.arrow_forwardDescribe the evolution of a star with a mass similar to that of the Sun, from the protostar stage to the time it first becomes a red giant. Give the description in words and then sketch the evolution on an HR diagram.arrow_forwardIn the star clusters shown, which one is younger and why?arrow_forward
- 3) indicate which locations in the H-R diagram correspond to places where the evolution is slow. Answers should be in the order they occur in the star. For example, if, in order, E, I and A are locations where there is a long time between changes, then enter EIA. (HINT: There are exactly three of them Hint: Hint: Our sun will be stable for another 4 billion years and white dwarfs last a long time because they are small. Really good additional hint: There are 3 places where the evolution is slow. Info below is what each of the labels are. 1) red giant, helium flash A2) white dwarf F3) red giant with helium burning shell B4) hydrogen fusion in shell around core I5) helium fusion in core D6) envelope ejected, planetary nebula H7) main-sequence star C8) helium used up, core collapses G9) hydrogen used up, core collapses Earrow_forwardQUESTION 16 Use the figure shown below to complete the following statement: A low-mass protostar (0.5 to 8M the mass compared to our sun) remains roughly constant in decreases in until it makes a turn towards the main sequence, as it follows its evolutionary track. Protostars of different masses follow diferent paths on their way to the main sequence. 107 Luminosity (L) 10 105 10 107 10² 101 1 10-1 10-2 10-3 Spectral type 0.01 R 0.001 Re 60 M MAIN SEQUENCE 40,000 30,000 20 Mau 10 Mgun 5 Mun 0.1 Run Ren radius; temperature luminosity; radius 3 Min. 05 BO temperature; luminosity Oluminosity: temperature radius: luminosity 1 M 10,000 6000 Surlace temperature (K) 1,000 Rs 2 M STAR L 0.8 M B5 AO FOGO КБ МБ -10 +10 3000 Absolute visual magnitude andarrow_forwardIn the HR diagrams for some young clusters, stars of both very low and very high luminosity are off to the right of the main sequence, whereas those of intermediate luminosity are on the main sequence. Can you offer an explanation for that? Sketch an HR diagram for such a cluster.arrow_forward
- According to the text, a star must be hotter than about 25,000 K to produce an H II region. Both the hottest white dwarfs and main-sequence O stars have temperatures hotter than 25,000 K. Which type of star can ionize more hydrogen? Why?arrow_forwardYou have discovered two star clusters. The first cluster contains mainly main-sequence stars, along with some red giant stars and a few white dwarfs. The second cluster also contains mainly main-sequence stars, along with some red giant stars, and a few neutron stars-but no white dwarf stars. What are the relative ages of the clusters? How did you determine your answer?arrow_forwardLook at the four stages shown in Figure 21.8. In which stage(s) can we see the star in visible light? In infrared radiation? Figure 21.8 Formation of a Star. (a) Dense cores form within a molecular cloud. (b) A protostar with a surrounding disk of material forms at the center of a dense core, accumulating additional material from the molecular cloud through gravitational attraction. (c) A stellar wind breaks out but is confined by the disk to flow out along the two poles of the star. (d) Eventually, this wind sweeps away the cloud material and halts the accumulation of additional material, and a newly formed star, surrounded by a disk, becomes observable. These sketches are not drawn to the same scale. The diameter of a typical envelope that is supplying gas to the newly forming star is about 5000 AU. The typical diameter of the disk is about 100 AU or slightly larger than the diameter of the orbit of Pluto.arrow_forward
- New stars form in regions where the density of gas and dust is relatively high. Suppose you wanted to search for some recently formed stars. Would you more likely be successful if you observed at visible wavelengths or at infrared wavelengths? Why?arrow_forwardIf a 100 solar mass star were to have a luminosity of 107 times the Sun’s luminosity, how would such a star’s density compare when it is on the main sequence as an O-type star, and when it is a cool supergiant (M-type)? Use values of temperature from Figure 18.14 or Figure 18.15 and the relationship between luminosity, radius, and temperature as given in Exercise 18.47. Figure 18.15 Schematic HR Diagram for Many Stars. Ninety percent of all stars on such a diagram fall along a narrow band called the main sequence. A minority of stars are found in the upper right; they are both cool (and hence red) and bright, and must be giants. Some stars fall in the lower left of the diagram; they are both hot and dim, and must be white dwarfs. Figure 18.14 HR Diagram for a Selected Sample of Stars. In such diagrams, luminosity is plotted along the vertical axis. Along the horizontal axis, we can plot either temperature or spectral type (also sometimes called spectral class). Several of the brightest stars are identified by name. Most stars fall on the main sequence.arrow_forwardYou can use the equation in Exercise 22.34 to estimate the approximate ages of the clusters in Figure 22.10, Figure 22.12, and Figure 22.13. Use the information in the figures to determine the luminosity of the most massive star still on the main sequence. Now use the data in Table 18.3 to estimate the mass of this star. Then calculate the age of the cluster. This method is similar to the procedure used by astronomers to obtain the ages of clusters, except that they use actual data and model calculations rather than simply making estimates from a drawing. How do your ages compare with the ages in the text? Figure 22.10 NGC 2264 HR Diagram. Compare this HR diagram to that in Figure 22.8; although the points scatter a bit more here, the theoretical and observational diagrams are remarkably, and satisfyingly, similar. Figure 22.12 Cluster M41. (a) Cluster M41 is older than NGC 2264 (see Figure 22.10) and contains several red giants. Some of its more massive stars are no longer close to the zero-age main sequence (red line). (b) This ground-based photograph shows the open cluster M41. Note that it contains several orange-color stars. These are stars that have exhausted hydrogen in their centers, and have swelled up to become red giants. (credit b: modification of work by NOAO/AURA/NSF) Figure 22.13 HR Diagram for an Older Cluster. We see the HR diagram for a hypothetical older cluster at an age of 4.24 billion years. Note that most of the stars on the upper part of the main sequence have turned off toward the red-giant region. And the most massive stars in the cluster have already died and are no longer on the diagram. Characteristics of Main-Sequence Starsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning