Foundations of Astronomy
13th Edition
ISBN: 9781305079151
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 23RQ
Name two processes (or objects) that remove material from the ISM.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A person uses a Nissan Leaf to commute from home to work 6.0 miles each way in a city (5 days a week, 48 weeks a year). This car runs 124 miles per gallon equivalent. Assume that 1 gallon of gasoline is equivalent to 33 kWh of energy. Also, assume that the Nissan Leaf is powered entirely by coal-generated electricity with a carbon footprint of 1.1 kg of CO2 per kWh.
What is the CO2 emission in kg/year? A. 843.097 kg CO2/year B. 1.296*10^7 kg CO2/year C. 421.548 kg CO2/year D. 0.77 kg CO2/year
A system's "entropy" is
(a) the amount of work the system can do.
(b) the amount of microscopic work the system can do.
(c) the amount of force the system could exert.
(d) the amount of thermal energy in the system.
(e) the amount of microscopic disorganization in the system.
1) Determine the change in chemical energy each second required to produce this increase in electric potential energy.
2) If there are roughly 7×10^11 of these cells in the body, how much chemical energy is used in pumping sodium ions each second?
3) Estimate the fraction of a person's metabolic rate used to pump these ions. Assume the metabolic rate to be 100 W.
Chapter 10 Solutions
Foundations of Astronomy
Ch. 10 - Prob. 1RQCh. 10 - Prob. 2RQCh. 10 - Prob. 3RQCh. 10 - I am a cloud containing lots of dust, and I appear...Ch. 10 - Prob. 5RQCh. 10 - Prob. 6RQCh. 10 - Prob. 7RQCh. 10 - Prob. 8RQCh. 10 - Prob. 9RQCh. 10 - Prob. 10RQ
Ch. 10 - Prob. 11RQCh. 10 - Prob. 12RQCh. 10 - Prob. 13RQCh. 10 - Prob. 14RQCh. 10 - Why is the ISM transparent at near-infrared and...Ch. 10 - Prob. 16RQCh. 10 - Prob. 17RQCh. 10 - Prob. 18RQCh. 10 - Prob. 19RQCh. 10 - Prob. 20RQCh. 10 - Prob. 21RQCh. 10 - Prob. 22RQCh. 10 - Name two processes (or objects) that remove...Ch. 10 - Prob. 24RQCh. 10 - Prob. 25RQCh. 10 - Prob. 26RQCh. 10 - Prob. 1DQCh. 10 - Prob. 2DQCh. 10 - Prob. 3DQCh. 10 - Prob. 4DQCh. 10 - Prob. 5DQCh. 10 - Prob. 6DQCh. 10 - Prob. 1PCh. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - Prob. 4PCh. 10 - Prob. 5PCh. 10 - The number density of air in a childs balloon is...Ch. 10 - Calculate the frequency in megahertz (MHz) of the...Ch. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - Prob. 1LTLCh. 10 - Prob. 2LTLCh. 10 - Prob. 3LTLCh. 10 - Prob. 4LTLCh. 10 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Given any two bodies, the one with the higher temp contains more heat. What is wrong with this statement? (5 sentences)arrow_forwardMachine parts are jammed in winter. Explain.arrow_forwardThe diffusion coefficient of a particular kind of tRNA molecule is D = 1.0 10−11m2 s−1 in the medium of a cell interior. How long does it take molecules produced in the cell nucleus to reach the walls of the cell at a distance 1.00um, corresponding to the radius of the cells?arrow_forward
- (a) Calculate the power per square meter reaching Earth's upper atmosphere from the Sun. (Take the power output of the Sun to be 4.001026 W.) (b) Part of this is absorbed and reflected by the atmosphere, so that a maximum of 1.30 kW/m2 reaches Earth's surface. Calculate the area in km 2 of solar energy collectors needed to replace an electric power plant that generates 750 MW if the collectors convert an average of 2.00% of the maximum power into electricity. (This small conversion efficiency is due to the devices themselves, and the fact that the sun is directly overhead only briefly.) With the same assumptions, what area would be needed to meet the United States' energy needs (1.051020J) ? Australia's energy needs (5.41018J) ? China's energy needs (6.31019J) ? (These energy consumption values are from 2006.)arrow_forwardWith respect to orderly and disorderly states, what do natural systems tend to do? Can a disorderly state ever transform to an orderly state? Explain.arrow_forwardThe temperature in the deep interiors of some giant molecular clouds in the Milky Way galaxy is 50 K. Compare the amount of energy that would have to be transferred to this environment to the amount that would have to be transferred to a room temperature environment to bring about a 7.7 J/K increase in the entropy of the universe in each case. ΔEroom temp/ ΔEMilky Way =arrow_forward
- Pd Pd 1. Let's consider a toy model of nuclear fission. Suppose an nucleus of Uranium-235 (92 protons, molar weight of 235 g/mole) "splits" into two "daughter" nuclei of Palladium (46 protons each) – this is not how it really happens, but it's a very simple model that actually gives fairly accurate results. The radius of the original U-235 nucleus is about 7.4 x 10-15 m. (a) If the Pd nuclei each have half the volume of the U nucleus, which is reasonable, and they are "touching" right after the split, how far apart are their centers? (b) Using conservation of energy, what will be the sum of the kinetic energies of the Pd nuclei when they are far apart from each other? (c) That's energy of one atom undergoing fission, so what, then, is the energy released by the fission of 1 kg of U-235? Express this in Joules and also in kilotons of TNT, where 1 kt = 4.2x1012 J. (The Hiroshima bomb yielded about 15 kt) (d) How many kwh (kilowatt-hours) of energy is this, (1 kwh = 3.6x10° J), and (if…arrow_forwardConsider a 24-kW hooded electric open burner in an area where the unit costs of electricity and natural gas are $0.10/kWh and $1.20/therm (1 therm = 105,500 kJ), respectively. The efficiency of open burners can be taken to be 73 percent for electric burners and 38 percent for gas burners. Determine the rate of energy consumption and the unit cost of utilized energy for both electric and gas burners.arrow_forwardA moonshiner makes the error of filling a glass jar to the brim and capping it tightly. The moonshine expands more than the glass when it warms up, in such a way that the volume increases by 0.5% (that is, ΔV/V0 = 5 10-3) relative to the space available.arrow_forward
- You are evaluating two biodegradable polymers, Polymer A and Polymer B, for material to release hormonal birth control. The hormone drug is attached to the polymer backbone and drug is released as the polymer degrades. You collect the following data on drug released from the polymer every 5 days over a 30-day study. State the mechanism by which Polymer A and Polymer B degrades and calculate the rate constant, k, of degradation for Polymer A and Polymer B to 2 significant digits. Show your work and upload your answers. 120% 70% Polymer A Polymer B 100% 60% 50% 80% 40% 60% 30% 40% 20% 20% 10% 0% 0% 0 5 10 15 20 25 30 0 5 10 15 20 25 30 Time (days) Time (days) Drug release Drug releasearrow_forwardVc=0V VA 3. In the picture tube of an anachronistic television set, electrons are "boiled" off a hot cathode in a process called thermionic emission. They are then accelerated toward an anode in order to create an electron beam. Consider the situation in which the electrons are initially at rest as they come off the cathode. They subsequently pass through an aperture in the anode with a speed of 2.65 x 107 m/s. The picture tube is under vacuum, and any forces other than electric forces are negligible and can be ignored. Find the voltage VA VA= 1,977 V Cathode High voltage Anodearrow_forwardThe most dangerous particles in polluted air are those with diameters less than 2.5 μm because they can penetrate deeply into the lungs. A 15-cm-tall closed container holds a sample of polluted air containing many spherical particles with a diameter of 2.5 μm and a mass of 2.6 x 10-14 kg. How long does it take for all of the particles to settle to the bottom of the container?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY