Foundations of Astronomy
13th Edition
ISBN: 9781305079151
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 11P
To determine
The range of wavelength at which coronal gas gives maximum intensity of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A cloud of gas has a temperature of 5,000 K.
Estimate the width of the hydrogen H-alpha line with an intrinsic wavelength λ = 656 nm.
(Note: the typical velocity of hydrogen atoms in a gas with temperature T is about (kT/mH)1/2, where k is Boltzmann constant and mH is the mass of a hydrogen atom, which is approximately the mass of a proton).
What is the wavelength in micrometers of peak emission for a black body at 33.5°C? (c = 3.0 × 108 m/s, Wien displacement law constant is 2.9 × 10-3 m ∙ K, σ = 5.67 × 10-8 W/m2 ∙ K4). Please give your answer with one decimal place.
Problem 3:
Two stars, M and N, from the same galaxy (at the same distance from
earth) are observed to have the same luminosity (that is, they emit the
same amount of energy per unit time). Star M is red, its spectrum peaks
2.4 × 1015s-1 while star N is white, its spectrum peaks at w =
3.6 x 1015s-1. Assuming that both stars radiate as black body, what is the
at w =
ratio of their radii?
Chapter 10 Solutions
Foundations of Astronomy
Ch. 10 - Prob. 1RQCh. 10 - Prob. 2RQCh. 10 - Prob. 3RQCh. 10 - I am a cloud containing lots of dust, and I appear...Ch. 10 - Prob. 5RQCh. 10 - Prob. 6RQCh. 10 - Prob. 7RQCh. 10 - Prob. 8RQCh. 10 - Prob. 9RQCh. 10 - Prob. 10RQ
Ch. 10 - Prob. 11RQCh. 10 - Prob. 12RQCh. 10 - Prob. 13RQCh. 10 - Prob. 14RQCh. 10 - Why is the ISM transparent at near-infrared and...Ch. 10 - Prob. 16RQCh. 10 - Prob. 17RQCh. 10 - Prob. 18RQCh. 10 - Prob. 19RQCh. 10 - Prob. 20RQCh. 10 - Prob. 21RQCh. 10 - Prob. 22RQCh. 10 - Name two processes (or objects) that remove...Ch. 10 - Prob. 24RQCh. 10 - Prob. 25RQCh. 10 - Prob. 26RQCh. 10 - Prob. 1DQCh. 10 - Prob. 2DQCh. 10 - Prob. 3DQCh. 10 - Prob. 4DQCh. 10 - Prob. 5DQCh. 10 - Prob. 6DQCh. 10 - Prob. 1PCh. 10 - Prob. 2PCh. 10 - Prob. 3PCh. 10 - Prob. 4PCh. 10 - Prob. 5PCh. 10 - The number density of air in a childs balloon is...Ch. 10 - Calculate the frequency in megahertz (MHz) of the...Ch. 10 - Prob. 8PCh. 10 - Prob. 9PCh. 10 - Prob. 10PCh. 10 - Prob. 11PCh. 10 - Prob. 1LTLCh. 10 - Prob. 2LTLCh. 10 - Prob. 3LTLCh. 10 - Prob. 4LTLCh. 10 - Prob. 5LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Assuming stars to behave as black bodies stefan-boltzmann law to show that the luminosity of a star is related to its surface temperature and size in the following way: L = 4(3.14)R^2oT^4 where o= 5.67 ×10^-8 Wm^-2 K-4 is the stefan- boltzmann constant. Then use this expression together with the knowledge that the sun has a surface temperature of 5700k and radius 695 500km to calculate the luminosity of the Sun in units of Wattsarrow_forwardWhat is therate of thermal radiation emittedfrom a star witha radius of 2.310x 109mand a surface temperatureof8,420K?Assume that the spherical surface behaves as a blackbody radiator.[Surface Area of a sphere = 4πr2; Area of a circle = πr2or (π/4)d2]arrow_forwardNeed help using Boltzmann's constant. If i'm trying to find average thermal velocity (Vrms) of a water droplet (spherical) and i'm given radius = 10^-6 m at 293.15 K, and the density of water is 0.997 g/mL (997 kg/m^3), how would i go about finding the Vrms? The droplet can also be treated as an ideal gas particle.arrow_forward
- (a) For a black body, the temperature and the wavelength of emission maximum, Amax, are related AT= T = ( 1 ) ²₂ by Wien's law, , where c₂ = hc/k. (i) Write a simplified Wien's law expression in a form of an equation of straight line, (i.e., y = mx + c). (ii) Identify an independent variable and the slope/gradient from (i) above. (iii) Values of Amax from a small pinhole in an electrically heated container were determined at a series of temperatures, and the results are given below. Draw a graph and deduce a value for Planck's constant. T(°C) 1000 Amax(nm) 2181 1500 1600 2000 1240 2500 1035 3000 878 3500 763arrow_forwardWhat is the rate of thermal radiation emitted from a star with a radius of 2.310 x 109 m anda surface temperature of 8,420 K? Assume that the spherical surface behaves as a blackbody radiator.[Surface Area of a sphere = 4rr?: Area of a circle = Mr? or (Tt/4)d21arrow_forwardWhat is the rate of thermal radiation Emitted from a star with a radius of 2.310 x 10⁹m and a surface temperature of 8,420k? Assume that the spherical surface behaves as blackbody radiator .arrow_forward
- What is the rate of thermal radiation emitted from a star with a radius of 2.310x 109mand a surface temperatureof8,420K?Assume that the spherical surface behaves as a blackbody radiator.[Surface Area of a sphere = 4πr2; Area of a circle = πr2or (π/4)d2]arrow_forwardA cloud of mean number density n ~ 3000 cm-3 and radius 3 pc has an ionising source with luminosity at 13.6 eV of L13.6eV = 2.18 x 109 erg s- at the centre. (a) What is the size of the HII region in pe? [og = 2 x 10-13 cms-]. %3D (b) What assumptions are involved in part a) (c) Discuss why the HII region will drive a shock into the rest of the cloud, and calculate the post-shock density. (d) Show why this HII region will destroy the cloud.arrow_forward(a) The star Dubhe emits radiation with a peak wavelength of 622 nm. What is its surface temperature (in K)? (Assume the star behaves like a blackbody.) answer in K (b) The star Deneb emits radiation with a peak wavelength of 340 nm. What is its surface temperature (in K)? (Assume the star behaves like a blackbody.) answer in Karrow_forward
- Calculate the amount of radiation emitted for a unit surface (2 m2) for black ball at 53°C and £≈0.96 Express your answer SI units (in W).arrow_forwardProblem 2: Black hole – the ultimate blackbody A black hole emits blackbody radiation called Hawking radiation. A black hole with mass M has a total energy of Mc², a surface area of 167G²M² /c*, and a temperature of hc³/167²KGM. a) Estimate the typical wavelength of the Hawking radiation emitted by a 1 solar mass black hole (2 × 103ºkg). Compare your answer to the size of the black hole. b) Calculate the total power radiated by a one-solar mass black hole. c) Imagine a black hole in empty space, where it emits radiation but absorbs nothing. As it loses energy, its mass must decrease; one could say "evaporates". Derive a differential equation for the mass as a function of time, and solve to obtain an expression for the lifetime of a black hole in terms of its mass.arrow_forwarda) b) Electron degeneracy pressure in a white dwarf star, of uniform density p, in the nonrela- tivistic case is given by Pwd ħ² 3memp 25/305/3 where symbols have their usual meanings. Using the result that the central pressure in a star, of radius R and uniform density, under gravitational attraction is given by Pc = Gp² R², derive an expression for the radius Rwd of a white dwarf in terms of its mass M, in the case of nonrelativistic electron degeneracy. Using your result, briefly discuss the limitations of your expression for the radius, in the context of white dwarfs of increasing mass. Consider a white dwarf, mass M, radius Rwd and temperature T, consisting entirely of helium nuclei and electrons. Show that the internal thermal energy of the ions alone is given by 3 M Eth= -kT, 8 mp where mp is the proton mass. White dwarfs initially have a very high temperature when they form, and then cool by radi- ation. Derive a differential equation for the rate of change of the temperature…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax