Physics of Everyday Phenomena
9th Edition
ISBN: 9781259894008
Author: W. Thomas Griffith, Juliet Brosing Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 14E
The volume of an ideal gas is increased from 0.4 m3 to 2.5 m3 while maintaining a constant pressure of 3600 Pa (1 Pa = 1 N/m2). How much work is done by the gas in this expansion?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Gas in a container is at a pressure of 1.9 atm and a volume of 6.0 m3.
(a) What is the work done on the gas if it expands at constant pressure to twice its initial volume? J(b) What is the work done on the gas if it is compressed at constant pressure to one-quarter of its initial volume? J
A sealed cylinder has a piston and contains 8.90×103 cm3 of an ideal gas at a pressure of 7.50 atm. Heat is slowly introduced, and the gas isothermally expands to 1.70×104 cm3. How much work ? does the gas do on the piston?
Gas in a container is at a pressure of 2.0 atm and a volume of 7.0 m3.
(a) What is the work done on the gas if it expands at constant pressure to twice its initial volume?J(b) What is the work done on the gas if it is compressed at constant pressure to one-quarter of its initial volume?
Chapter 10 Solutions
Physics of Everyday Phenomena
Ch. 10 - Is an object that has a temperature of 0C hotter...Ch. 10 - Prob. 2CQCh. 10 - The volume of a gas held at constant pressure...Ch. 10 - We sometimes attempt to determine whether another...Ch. 10 - Prob. 5CQCh. 10 - Is it possible for a temperature to be lower than...Ch. 10 - Is an object with a temperature of 273.2 K hotter...Ch. 10 - Two objects at different temperatures are placed...Ch. 10 - Is it possible for the final temperature of the...Ch. 10 - Two objects of the same mass, but made of...
Ch. 10 - Two cities, one near a large lake and the other in...Ch. 10 - Is it possible to add heat to a substance without...Ch. 10 - What happens if we add heat to water that is at...Ch. 10 - What happens if we remove heat from water at 0C?...Ch. 10 - What does it mean for a liquid to be supercooled?...Ch. 10 - Prob. 16CQCh. 10 - Would a PCM (phase-change material) be useful in a...Ch. 10 - Is it possible to change the temperature of a...Ch. 10 - A hammer is used to pound a piece of soft metal...Ch. 10 - Which represents the greater amount of energy, 1 J...Ch. 10 - Prob. 21CQCh. 10 - Is it possible for the internal energy of a system...Ch. 10 - Based upon his experiments, Joule proposed that...Ch. 10 - An ideal gas is compressed without allowing any...Ch. 10 - Is it possible to decrease the temperature of a...Ch. 10 - Heat is added to an ideal gas, and the gas expands...Ch. 10 - Heat is added to an ideal gas maintained at...Ch. 10 - Prob. 28CQCh. 10 - Prob. 29CQCh. 10 - A block of wood and a block of metal have been...Ch. 10 - Heat is sometimes lost from a house through cracks...Ch. 10 - Is it possible for water on the surface of a road...Ch. 10 - What heat transfer mechanisms (conduction,...Ch. 10 - Prob. 34CQCh. 10 - How do we get heat from the sun through the...Ch. 10 - What property does glass share with carbon dioxide...Ch. 10 - Prob. 37CQCh. 10 - Will a solar power plant (one that generates...Ch. 10 - Prob. 1ECh. 10 - Prob. 2ECh. 10 - The temperature on a very warm summer day is 110F....Ch. 10 - Prob. 4ECh. 10 - Prob. 5ECh. 10 - How much heat is required to raise the temperature...Ch. 10 - How much heat must be removed from a 300-g block...Ch. 10 - How much heat must be added to 120 g of ice at 0C...Ch. 10 - Prob. 9ECh. 10 - Prob. 10ECh. 10 - If 300 cal of heat are added to a system, how much...Ch. 10 - If 1400 J of heat are added to 90 g of water...Ch. 10 - While a gas does 825 J of work on its...Ch. 10 - The volume of an ideal gas is increased from 0.4...Ch. 10 - If the initial temperature in exercise E14 is...Ch. 10 - Work of 2200 J is done on an ideal gas, but the...Ch. 10 - Four hundred calories of heat are added to a gas....Ch. 10 - Work of 1800 J is done by stirring a perfectly...Ch. 10 - Prob. 1SPCh. 10 - A student constructs a thermometer and invents her...Ch. 10 - Prob. 3SPCh. 10 - A 170-g quantity of a certain metal, initially at...Ch. 10 - Prob. 5SPCh. 10 - Suppose the pressure of an ideal gas mixture...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- One mole of an ideal gas does 3 000 J of work on its surroundings as it expands isothermally to a final pressure of 1.00 atm and volume of 25.0 L. Determine (a) the initial volume and (b) the temperature of the gas.arrow_forwardWhen a gas undergoes an adiabatic expansion, which of the following statements is true? (a) The temperature of the gas does not change. (b) No work is done by the gas. (c) No energy is transferred to the gas by heat. (d) The internal energy of the gas does not change. (e) The pressure increases.arrow_forwardA hand-driven tire pump has a piston with a 2.50-cm diameter and a maximum stroke of 30.0 cm. (a) How much work do you do in one stroke if the average gauge pressure is 2.1105 N/m2 (about 35 psi)? (b) What average force do you exert on the piston, neglecting friction and gravitational force?arrow_forward
- Two containers hold an ideal gas at the same temperature and pressure. Both containers hold the same type of gas, but container B has twice the volume of container A. (i) What is the average translational kinetic energy per molecule in container B? (a) twice that of container A (b) the same as that of container A (c) half that of container A (d) impossible to determine (ii) From the same choices, describe the internal energy of the gas in container B.arrow_forwardWhen 400 J of heat are slowly added to 10 mol of an ideal monatomic gas, its temperature rises by 10 . What is the work done on the gas?arrow_forwardConsider these scenarios and state whether work is done by the system on the environment (SE) or by the environment on the system (ES): (a) opening a carbonated beverage; (b) filling a flat tire; (c) a sealed empty gas can expands on a hot day, bowing out the walls.arrow_forward
- Air (a diatomic ideal gas) at 27.0C and atmospheric pressure is drawn into a bicycle pump (Figure P17.53) that has a cylinder with an inner diameter of 2.50 cm and length 50.0 cm. The downstroke adiabatically compresses the air, which reaches a gauge pressure of 8.00 105 Pa before entering the tire. We wish to investigate the temperature increase of the pump. (a) What is the initial volume of the air in the pump? (b) What is the number of moles of air in the pump? (c) What is the absolute pressure of the compressed air? (d) What is the volume of the compressed air? (e) What is the temperature of the compressed air? (f) What is the increase in internal energy of the gas during the compression? What If? The pump is made of steel that is 2.00 mm thick. Assume 4.00 cm of the cylinders length is allowed to come to thermal equilibrium with the air. (g) What is the volume of steel in this 4.00-cm length? (h) What is the mass of steel in this 4.00-cm length? (i) Assume the pump is compressed once. After the adiabatic expansion, conduction results in the energy increase in part (f) being shared between the gas and the 4.00-cm length of steel. What will be the increase in temperature of the steel after one compression? Figure P17.53arrow_forwardA gas in a cylindrical closed container is adiabatically and quasi-statically expanded from a state A (3 MPa, 2 L) to a state B with volume of 6 L along the path 1.8pV= constant. (a) Plot the path in the pV plane. (b) Find the amount of work done by the gas and the change in the internal energy of the gas during the process.arrow_forwardIn Figure P17.32, the change in internal energy of a gas that is taken from A to C along the blue path is +800 J. The work done on the gas along the red path ABC is 500 J. (a) How much energy must be added to the system by heat as it goes from A through B to C? (b) If the pressure at point A is five times that of point C, what is the work done on the system in going from C to D? (c) What is the energy exchanged with the surroundings by heat as the gas goes from C to A along the green path? (d) If the change in internal energy in going from point D to point A is +500 J, how much energy must be added to the system by heat as it goes from point C to point D? Figure P17.32arrow_forward
- You have a particular interest in automobile engines, so you have secured a co-op position at an automobile company while you attend school. Your supervisor is helping you to learn about the operation of an internal combustion engine. She gives you the following assignment, related to a simulation of a new engine she is designing. A gas, beginning at PA = 1.00 atm, VA = 0.500 L, and TA = 27.0C, is compressed from point A on the PV diagram in Figure P19.31 (page 530) to point B. This represents the compression stroke in a fourcycle gasoline engine. At that point, 132 J of energy is delivered to the gas at constant volume, taking the gas to point C. This represents the transformation of potential energy in the gasoline to internal energy when the spark plug fires. Your supervisor tells you that the internal energy of a gas is proportional to temperature (as we shall find in Chapter 20), the internal energy of the gas at point A is 200 J, and she wants to know what the temperature of the gas is at point C. Figure P19.31arrow_forward(a) Determine the work done on a gas that expands from i to f as indicated in Figure P19.16. (b) What If? How much work is done on the gas if it is compressed from f to i along the same path? Figure P19.16arrow_forwardThe compression ratio of an Otto cycle as shown in Figure 21.12 is VA/VB = 8.00. At the beginning A of the compression process, 500 cm3 of gas is at 100 kPa and 20.0C. At the beginning of the adiabatic expansion, the temperature is TC = 750C. Model the working fluid as an ideal gas with = 1.40. (a) Fill in this table to follow the states of the gas: (b) Fill in this table to follow the processes: (c) Identify the energy input |Qh|, (d) the energy exhaust |Qc|, and (e) the net output work Weng. (f) Calculate the efficiency. (g) Find the number of crankshaft revolutions per minute required for a one-cylinder engine to have an output power of 1.00 kW = 1.34 hp. Note: The thermodynamic cycle involves four piston strokes.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY