Concept explainers
(a)
Interpretation:
The expansion of gas should be shown as spontaneous when the external pressure is suddenly changes to 2.0 atm.
Concept Introduction:
The mathematical expression for entropy change in system is:
Where, n = number of moles
R = universal gas constant
V1 and V2 = initial and final volume
Ideal gas equation is:
Where, P = pressure
V = volume
n = number of moles
R = Universal gas constant
T = temperature
(a)

Answer to Problem 136CP
The process is spontaneous as entropy change of the universe is greater than zero.
Explanation of Solution
Number of moles of monoatomic ideal gas = 1.0 mole
Initial volume = 5.0 L
Initial pressure = 5.0 atm
Final pressure = 2.0 atm
From ideal gas equation,
Rearrange the above equation in terms of temperature,
Put the values,
The final volume is calculated as:
Put the values,
=
The entropy change is calculated as:
Put the values,
Now,
Since, the change in internal energy of an isothermal process is zero, thus heat is equal to negative of work done.
Put the values,
Entropy change for surrounding is calculated as:
Put the values,
The entropy change of universe is calculated as:
Thus, from above value it is clear that the process is spontaneous as entropy change of the universe is greater than zero.
(b)
Interpretation:
The compression of gas should be shown as spontaneous when the external pressure is suddenly changes back to 5.0 atm.
Concept Introduction:
The mathematical expression for entropy change in system is:
Where, n = number of moles
R = universal gas constant
V1 and V2 = initial and final volume
Ideal gas equation is:
Where, P = pressure
V = volume
n = number of moles
R = Universal gas constant
T = temperature
(b)

Answer to Problem 136CP
The process is spontaneous as entropy change of the universe is greater than zero.
Explanation of Solution
Number of moles of monoatomic ideal gas = 1.0 mole
Initial volume = 12.0 L
Final Volume = 12.0 L
From ideal gas equation,
Rearrange the above equation in terms of temperature,
Put the values,
The initial volume is calculated as:
Put the values,
=
The entropy change is calculated as:
Put the values,
Now,
Since, the change in internal energy of an isothermal process is zero, thus heat is equal to negative of work done.
Put the values,
Entropy change for surrounding is calculated as:
Put the values,
The entropy change of universe is calculated as:
Thus, from above value it is clear that the process is spontaneous as entropy change of the universe is greater than zero.
(c)
Interpretation:
The value of should be calculated along with its sign comparison for part (a) and (b) and also, the reason should be discussed for not using this sign to predict spontaneity.
Concept Introduction:
The mathematical expression for Gibbs free energy change is:
Where,
T = temperature
(c)

Explanation of Solution
For isothermal process, change in enthalpy is equal to zero.
Since, both of the process is isothermal, thus the enthalpy change is equal to zero,
Thus, expression of Gibbs free energy is shown as:
For part (a) that is expansion process:
Put the values,
In kJ,
For part (b) that is compression process:
Put the values,
In kJ,
Now, according to the value of changes in entropy in both parts shows that the process is spontaneous as entropy change is greater than zero but the sign of change in Gibbs free energy is different for both parts. This is because change in Gibbs free energy depends on the sign of entropy change of the system only. Therefore, the sign of change in Gibbs free energy cannot be used for prediction of spontaneity.
Want to see more full solutions like this?
Chapter 10 Solutions
WebAssign for Zumdahl's Chemical Principles, 8th Edition [Instant Access], Single-Term
- Can you explain how I get these here and show the steps plz?arrow_forwardGive the IUPAC name for this compound Hydrocarbon Condensed Formulas Hint C2H5 CH2CH3 expand that in all the formula Part A: (CH3)2CHCH(C2H5)CH2CH2CH3 Give the IUPAC name for this compound. Part B: CH2=C(C2H5)CH2CH2CH3 Give the IUPAC name for this compound. Part C: (CH3)2C=CHC(C2H5)=CH2 Give the IUPAC name for this compound. Part D: CH3C=CCH(C2H5)2 Give the IUPAC name for this compound. Part E: (CH3)3CC=CCH2CH=C(CH3)2arrow_forwardSelect/ Match the correct letter from the image below for the IUPAC names given below: A B C D 3 E F G H K L Part 1. 4-methylheptane For example.mmmm Answer Letter H _for part 1 Part 2. 2,4-dimethylhexane Part 3. 2,3-dimethylpentane Part 4. 2,2-dimethylhexane Part 5. 2-ethyl-1,1,3,3-tetramethylcyclopentane Part 6. 3-ethyl-2-methylpentanearrow_forward
- Can u show the process as to how to get these?arrow_forwardSketch the expected 'H NMR spectra for the following compound. Label all of the H's in the structure and the corresponding signal for the spectra you sketch. Make sure you include the integration value and the splitting pattern for each signal Indicate how many signals you would expect in the 13C NMRarrow_forwardUse IUPAC naming rules to name the following hydrocarbon compounds: CH2-CH3 | a) CH-CH-CH2-CH-CH-CH3 b) | CH2 CH3 | CH3 CH3 \ / C=C H 1 H CH2-CH3 c) d) CH=C-CH3 e) CH3-CH2-CH2-CH=CH-CH3 f) CH2=CH-CH2-CH=CH-CH3 g) CH3-CH2-C = C-CH2-CH3 h)arrow_forward
- Q5 Name the following : a. b. C. d. e.arrow_forward25. Predict the major product of the following reaction. 1 equivalent of each of the starting materials was used. H₂C CH3 CH3 H3C H3C H3C. CH2 + H3C. heat CH3 CH H.C. CH3 H.C H.C CH3 CH CH3 CH3 A B C Earrow_forwardFind chemical structures based on the below information. a) Chemical formula C6H8O Compound is aromatic plus has two 1H NMR peaks that integrated for 3 each that are singlets (it could have more peaks in the 1H NMR b) Chemical Formula: C6H100 Compounds is conjugated 'H NMR has a signal that integrates for 6 and is a doublet IR spectra has a signal at 1730 cm-1arrow_forward
- Jaslev Propose a synthesis of the following starting from benzene and any other reagents and chemicals. No mechanisms are required. Indicate the condition for each step plus the major product for each step. More than two steps are required. Step 1 Step 2 مہد Brarrow_forwardPart C: The line formula for another branched alkane is shown below. i. In the IUPAC system what is the root or base name of this compound? ii. How many alkyl substituents are attached to the longest chain? iii. Give the IUPAC name for this compound.arrow_forwardPart D: Draw the Structural Formula for 4-ethyl-2-methylhexane Part E. Draw the Structural Formula for 1-chloro-3,3-diethylpentane (Chloro = Cl)arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





