
( HugeInteger Class) A machine with 32- bit integers can represent integers in the range of approximately-2 billion. This fixed-size restriction is rarely troublesome, but there are applications in which we would like to be able to use a much wider range of integers. This is what C++ was built to do, namely, create powerful new data types. Consider class HugeInteger of Figs. 10.17-10.19, which is similar to the HugeInteger class in Exercise 9.14. Study the class carefully, then respond to the following:
- Describe precisely how it operates.
- What restrictions does the class have?
- Overload the * multiplication operator.
- Overload the / division operator.
- Overload all the relational and equality operators.
[Note: We do not show an assignment operator or copy constructor for class HugeInteger, because the assignment operator and copy constructor provided by the compiler are capable of copying the entire array data member properly.]
- // Fig. 10.17: HugeInteger.h
- // HugeInteger Class definition.
- #ifndef HugeInteger H
- #define HugeInteger H
- #include
- #include
- #include
Fig.10.17 HugeInteger Class Definition. (Part 2of 2)
1 // Fig. 10.18; HugeInteger.Cpp
2 // HugeInteger member-function and friend-function definitions.
3 #include
4 #include “HugeInteger .h” // HugeInteger Class definition
5 using namespace;
6
7 // default constructors; conversion constructor that converts
8 // a long integer into a HugeInteger object
9 HugeInteger ::HugeInteger (long value) {
10 // place digits of argument into array
11 for (int j {digits -1} ; value != 0 && j >= 0; j--) {
12 integer [ j ] = value % 10;
13 value /= 10;
14 }
15 }
16
17 // Conversion constructor that converts a character string
18 // representing a large integer into a HugeInteger object
19 HugeInteger ::HugeInteger (const string&number) {
20 // place digits of argument into array
21 int length { number, size () };
22
23 for (int j {digits -length}, k {0}; j < digits; ++j, ++k) {
24 if (isdigit (number [k])) { // ensure that character is a digit
25 integer [j] = number [k] − ‘0’;
26 }
27 }
30 // addition operator; HugeInteger + HugeInteger
31 // HugeInteger HugeInteger :: operator+(const HugeInteger & op2) const {
32 HugeInteger temp; // temporary result
33 int carry= 0;
34
35 for (int I (digits-1) ; I >=0; i--) {
36 temp.integer [i] = integer [i] op2.integer [i]
+ carry:
37
38 //determine whether to carry a 1
39 If (temp.integer[i] > 9) {
40 temp.integer [i] %-10; //reduce to
41 carry= 0;
42 }
43 else { // no carry
44 carry = 0;
45 }
46 }
47
48 return temp; // return copy of temporary object
49 ]
50
51 // addition operator; HugeInteger + int
52 HugeInteger HugeInteger ::operators+(int op2) const {
53 // convert op2 to a HugeInteger , then invoke
54 // operator + for two HugeInteger objects
55 return *this + HugeInteger (op2);
56 }
57
58 //addition operator ;
59 // HugeInteger + string that represents large integervalue
60 HugeInteger HugeInteger ::operator+(const string&op2) const {
61 // convert op2 to a HugeInteger , then invoke
62 //operator + for two HugeInteger objects
63 return *this +HugeInteger (op2);
64 }
65
66 // overloaded output operator
67 ostream & operator <<(ostream & output, const HugeInteger & num ) {
68 int I ;
69
70 // skip leading zeros
71 for (I =0; (I < HugeInteger ::digits) && (0== num.integer [i] ) ; ++i) { }
72
73 if (I ==HugeInteger ::digits) {
74 output << 0;
75 }
76 else {
77 for (; I < HugeInteger :: digits; ++i) [
78 output << num.integer [i]
79 ]
80 ]
81
82 return output
83 }
- // Fig. 10.19: Fig10_19.cpp
- // HugeInteger test program.
- #include < iostream>
- #include “ HugeInteger.h”
- Using namespace std;
- Int main () {
- HugeInteger n1{7654321};
- HUgeInteger n2{7891234};
- HugeInteger n3{“999999999999999999999999999999999”};
- HUgeInteger n4{“1”};
- HugeInteger n5;
- Cout << “n1 is “ << n1 << “\nn2 is “ << n2
- << “nn3 is “ <<n3 << nn4 is “ <<n4
- << ‘\nn5 is “ << n5 << “\n\n”;
- N5 = n1 + n2 ;
- Cout << n1 << “ + ” << n2 << “ = ” << n5 << “\n\n”;
- Cout << n3 << “ + “ << n4 << “\n= “ << (n3 + n4) << “\n\n;
- n5 = n1 + n2;
- Cout << n1<< “+” << 9<< “ = “ << n5 << “\n\n”;
- n5 = n2 + “10000” ;
- Cout << n2 << “ +” << “10000” << “ + “ << n5 << end ] :
- }
N1 is 7654321 N2 is 7891234 N3 is 99999999999999999999999999999 N4 is 1 N5 is 0 765431+7891324=15545555 99999999999999999999999999999+1 =100000000000000000000000000000 7654321+9 = 7654330 7891234+ 10000 =7901234 |

Want to see the full answer?
Check out a sample textbook solution
Chapter 10 Solutions
C++ How to Program (10th Edition)
Additional Engineering Textbook Solutions
SURVEY OF OPERATING SYSTEMS
Electric Circuits. (11th Edition)
Database Concepts (8th Edition)
Modern Database Management
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Java: An Introduction to Problem Solving and Programming (8th Edition)
- Briefly describe the issues involved in using ATM technology in Local Area Networksarrow_forwardFor this question you will perform two levels of quicksort on an array containing these numbers: 59 41 61 73 43 57 50 13 96 88 42 77 27 95 32 89 In the first blank, enter the array contents after the top level partition. In the second blank, enter the array contents after one more partition of the left-hand subarray resulting from the first partition. In the third blank, enter the array contents after one more partition of the right-hand subarray resulting from the first partition. Print the numbers with a single space between them. Use the algorithm we covered in class, in which the first element of the subarray is the partition value. Question 1 options: Blank # 1 Blank # 2 Blank # 3arrow_forward1. Transform the E-R diagram into a set of relations. Country_of Agent ID Agent H Holds Is_Reponsible_for Consignment Number $ Value May Contain Consignment Transports Container Destination Ф R Goes Off Container Number Size Vessel Voyage Registry Vessel ID Voyage_ID Tonnagearrow_forward
- I want to solve 13.2 using matlab please helparrow_forwarda) Show a possible trace of the OSPF algorithm for computing the routing table in Router 2 forthis network.b) Show the messages used by RIP to compute routing tables.arrow_forwardusing r language to answer question 4 Question 4: Obtain a 95% standard normal bootstrap confidence interval, a 95% basic bootstrap confidence interval, and a percentile confidence interval for the ρb12 in Question 3.arrow_forward
- using r language Obtain a bootstrap t confidence interval estimate for the correlation statistic in Example 8.2 (law data in bootstrap).arrow_forwardusing r language Compute a jackknife estimate of the bias and the standard error of the correlation statistic in Example 8.2.arrow_forwardusing r languagearrow_forward
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr

