To find the total angular displacement during the playing time of the compact disc in part (B) of Example 10.2, the disc was modeled as a rigid object under constant angular acceleration . In reality, the angular acceleration of a disc is not constant. In this problem, let us explore the actual time dependence of the angular acceleration. (a) Assume the track on the disc is a spiral such that adjacent loops of the track are separated by a small distance h . Slum that the radius r of a given portion of the track is given by r = r i + h θ 2 π where r i is the radius of the innermost portion of the track and θ is the angle through which the disc turns to arrive at the location of the track of radius r . (b) Show that the rate of change of the angle θ is given by d θ d t = v r i + ( h θ / 2 π ) where v is the constant speed with which the disc surface passes the laser. (c) From the result in part (b), use integration to find an expression for the angle θ as a function of time. (d) From the result in part (c), use differentiation to find the angular acceleration of the disc as a function of time.
To find the total angular displacement during the playing time of the compact disc in part (B) of Example 10.2, the disc was modeled as a rigid object under constant angular acceleration . In reality, the angular acceleration of a disc is not constant. In this problem, let us explore the actual time dependence of the angular acceleration. (a) Assume the track on the disc is a spiral such that adjacent loops of the track are separated by a small distance h . Slum that the radius r of a given portion of the track is given by r = r i + h θ 2 π where r i is the radius of the innermost portion of the track and θ is the angle through which the disc turns to arrive at the location of the track of radius r . (b) Show that the rate of change of the angle θ is given by d θ d t = v r i + ( h θ / 2 π ) where v is the constant speed with which the disc surface passes the laser. (c) From the result in part (b), use integration to find an expression for the angle θ as a function of time. (d) From the result in part (c), use differentiation to find the angular acceleration of the disc as a function of time.
Solution Summary: The author explains that the radius of a given portion of the track is given by r=r_i+htheta 2pi
To find the total angular displacement during the playing time of the compact disc in part (B) of Example 10.2, the disc was modeled as a rigid object under constant angular acceleration. In reality, the angular acceleration of a disc is not constant. In this problem, let us explore the actual time dependence of the angular acceleration. (a) Assume the track on the disc is a spiral such that adjacent loops of the track are separated by a small distance h. Slum that the radius r of a given portion of the track is given by
r
=
r
i
+
h
θ
2
π
where ri is the radius of the innermost portion of the track and θ is the angle through which the disc turns to arrive at the location of the track of radius r. (b) Show that the rate of change of the angle θ is given by
d
θ
d
t
=
v
r
i
+
(
h
θ
/
2
π
)
where v is the constant speed with which the disc surface passes the laser. (c) From the result in part (b), use integration to find an expression for the angle θ as a function of time. (d) From the result in part (c), use differentiation to find the angular acceleration of the disc as a function of time.
Definition Definition Angle at which a point rotates around a specific axis or center in a given direction. Angular displacement is a vector quantity and has both magnitude and direction. The angle built by an object from its rest point to endpoint created by rotational motion is known as angular displacement. Angular displacement is denoted by θ, and the S.I. unit of angular displacement is radian or rad.
- 13-
3.
Shastri recalled reading that for an ideal transformer, "the ratio of the primary voltage to the
secondary voltage is equal to the ratio of the secondary current to the primary current."
Plan and design an experiment to investigate whether the statement above is true.
(8)
•
With the aid of a fully labelled circuit diagram, describe a procedure which can be used to
investigate whether the statement is true. The circuit diagram must include the following
components:
A variable AC voltage supply
•
AC voltmeters
•
AC ammeters
A transformer with adjustable turns ratio
Connecting wires
•
°
A load resistor
answer question 1-6
Chapter 10 Solutions
Physics for Scientists and Engineers, Technology Update, Hybrid Edition (with Enhanced WebAssign Multi-Term LOE Printed Access Card for Physics)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.