Example 10.6 Angular Acceleration of a Wheel A wheel of radius R mass M and moment of inertia I is mounted on a frictionless, horizontal axle as in Figure 10.14. A light cord wrapped around the wheel supports an object of mass m . When the wheel is released, the object accelerates downward, the cord unwraps off the wheel, and the wheel rotates with an angular acceleration. Find expressions for the angular acceleration of the wheel, the translational acceleration of the object, and the tension in the cord. 5. Using the results from Example 10.6, how would you calculate the angular speed of the wheel and the linear speed of the hanging object at t = 2 s, assuming the system is released from rest at t = 0?
Example 10.6 Angular Acceleration of a Wheel A wheel of radius R mass M and moment of inertia I is mounted on a frictionless, horizontal axle as in Figure 10.14. A light cord wrapped around the wheel supports an object of mass m . When the wheel is released, the object accelerates downward, the cord unwraps off the wheel, and the wheel rotates with an angular acceleration. Find expressions for the angular acceleration of the wheel, the translational acceleration of the object, and the tension in the cord. 5. Using the results from Example 10.6, how would you calculate the angular speed of the wheel and the linear speed of the hanging object at t = 2 s, assuming the system is released from rest at t = 0?
Solution Summary: The author explains the angular speed and linear speed of the wheel at t=2s.
A wheel of radius R mass M and moment of inertia I is mounted on a frictionless, horizontal axle as in Figure 10.14. A light cord wrapped around the wheel supports an object of mass m. When the wheel is released, the object accelerates downward, the cord unwraps off the wheel, and the wheel rotates with an angular acceleration. Find expressions for the angular acceleration of the wheel, the translational acceleration of the object, and the tension in the cord.
5. Using the results from Example 10.6, how would you calculate the angular speed of the wheel and the linear speed of the hanging object at t = 2 s, assuming the system is released from rest at t = 0?
Definition Definition Rate of change of angular velocity. Angular acceleration indicates how fast the angular velocity changes over time. It is a vector quantity and has both magnitude and direction. Magnitude is represented by the length of the vector and direction is represented by the right-hand thumb rule. An angular acceleration vector will be always perpendicular to the plane of rotation. Angular acceleration is generally denoted by the Greek letter α and its SI unit is rad/s 2 .
What point on the spring or different masses should be the place to measure the displacement of the spring? For instance, should you measure to the bottom of the hanging masses?
Let's assume that the brightness of a field-emission electron gun is given by
β
=
4iB
π² d²α²
a) Assuming a gun brightness of 5x108 A/(cm²sr), if we want to have an electron beam with a
semi-convergence angle of 5 milliradian and a probe current of 1 nA, What will be the
effective source size? (5 points)
b) For the same electron gun, plot the dependence of the probe current on the parameter
(dpa) for α = 2, 5, and 10 milliradian, respectively. Hint: use nm as the unit for the
electron probe size and display the three plots on the same graph. (10 points)
i need step by step clear answers with the free body diagram clearly
Chapter 10 Solutions
Physics for Scientists and Engineers, Technology Update, Hybrid Edition (with Enhanced WebAssign Multi-Term LOE Printed Access Card for Physics)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.