![Chemistry: An Atoms First Approach](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_largeCoverImage.gif)
Concept explainers
Interpretation: The amount of reagents required and range of osmotic pressure has to be calculated.
Concept Introduction: The mass of the compound is calculated by taking the products of molar mass of the compound to the given mass. The mass of compound can be given by,
Colligative properties of a substance include the depression in the freezing point, elevation of boiling-point and osmotic pressure. These are dependant only on the number present and not based on the solute particles present in an ideal solution.
The osmotic pressure can be given by the equation,
![Check Mark](/static/check-mark.png)
Answer to Problem 108AE
The range of osmotic pressure is
Explanation of Solution
Record the given info
Mass of Sodium =
Mass of Potassium =
Mass of Calcium =
Mass of Chlorine =
Mass of Lactate =
To calculate the mass of individual elements
Molar mass of Sodium lactate =
Molar mass of Lactate =
Molar mass of
Molecular mass of Calcium =
Molar mass of
Molecular weight of Potassium =
Molar mass of
Molecular mass of Sodium=
The average values for each ion are,
The source of Lactate is
Mass of Lactate =
The source of
Mass of
The source of
Mass of
Mass of
Additional amount of Sodium
Mass of Sodium added =
Mass of
Total
Therefore,
Record the given info
Mass of Sodium =
Mass of Potassium =
Mass of Calcium =
Mass of Chlorine =
Mass of Lactate =
To calculate the minimum and maximum concentrations of ions
Molar mass of Lactate =
Molecular mass of Calcium =
Molecular weight of Potassium =
Molecular mass of Sodium=
At minimum concentration,
Molarity of Sodium =
Molarity of Potassium =
Molarity of Lactate =
Molarity of Calcium =
Molarity of Chlorine =
The total concentration =
=
At maximum concentration,
Molarity of Sodium =
Molarity of Potassium =
Molarity of Lactate =
Molarity of Calcium =
Molarity of Chlorine =
The total concentration=
=
The total concentration of ions for minimum and maximum concentration is calculated by using the summing the molarities of individual ions. The molarities of individual ions are calculated using the minimum and maximum moles to their molecular masses. The total concentrations at minimum and maximum concentrations are
To calculate the osmotic pressure at minimum and maximum concentration
At minimum concentration,
At maximum concentration,
At minimum concentration, osmotic pressure=
At maximum concentration, osmotic pressure=
The mass of individual elements was calculated using their respective molar mass and molecular weight and the given weight. A typical analytical balance can nearly measure to
The osmotic pressure at minimum and maximum concentrations was calculated using the molarities at minimum and maximum concentration. The osmotic pressure at minimum and maximum concentrations were
Want to see more full solutions like this?
Chapter 10 Solutions
Chemistry: An Atoms First Approach
- टे Predict the major products of this organic reaction. Be sure to use wedge and dash bonds when necessary, for example to distinguish between different major products. ☐ ☐ : ☐ + NaOH HO 2 Click and drag to start drawing a structure.arrow_forwardShown below are five NMR spectra for five different C6H10O2 compounds. For each spectrum, draw the structure of the compound, and assign the spectrum by labeling H's in your structure (or in a second drawing of the structure) with the chemical shifts of the corresponding signals (which can be estimated to nearest 0.1 ppm). IR information is also provided. As a reminder, a peak near 1700 cm-1 is consistent with the presence of a carbonyl (C=O), and a peak near 3300 cm-1 is consistent with the presence of an O–H. Extra information: For C6H10O2 , there must be either 2 double bonds, or 1 triple bond, or two rings to account for the unsaturation. There is no two rings for this problem. A strong band was observed in the IR at 1717 cm-1arrow_forwardPredict the major products of the organic reaction below. : ☐ + Х ك OH 1. NaH 2. CH₂Br Click and drag to start drawing a structure.arrow_forward
- NG NC 15Show all the steps you would use to synthesize the following products shown below using benzene and any organic reagent 4 carbons or less as your starting material in addition to any inorganic reagents that you have learned. NO 2 NC SO3H NO2 OHarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardShow work...don't give Ai generated solutionarrow_forward
- 1 Please provide an efficient synthesis of the product below from the starting material. Use the starting material as the ONLY source of carbon atoms. Show the synthesis of each compound that would be used in the overall synthesis of the product. [This synthesis uses alkyne and alcohol chemistry.]arrow_forward10- 4000 20 20 30- %Reflectance 60 50- 09 60- 40- Date: Thu Feb 06 17:30:02 2025 (GMT-05:0(UnknownP Scans: 8 Resolution: 2.000 70 70 88 80 3500 3000 2500 90 100 00 Wavenumbers (cm-1) 2000 1500 2983.10 2359.13 1602.52 1584.22 1451.19 1391.87 1367.07 1314.37 1174.34 1070.13 1027.33 1714.16 1269.47 1000 1106.08 1001.14 937.02 873.60 850.20 780.22 686.91 674.38 643.09 617.98 02/06/25 16:38:20arrow_forwardd. Draw arrow-pushing mechanism for an enzymatic retro-aldol reaction of the following hexose. Use B: and/or HA as needed. OH OH سية HO OH OHarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)