Estimate the temperature range over which each of the following reactions is spontaneous.
(a)
(b)
(c)
(d)

Interpretation:
The temperature range over which the reaction
Concept introduction:
A process which happens without any outward intervention is recognized as the spontaneous process. As per the 2nd law of thermodynamics, that states the universe’s entropy rises for any spontaneous process.
A process which happens when pressure and temperature both are constant, the determination of spontaneity can be done using Gibbs free energy:
Here, a sign of
Answer to Problem 10.75PAE
Solution:
The reaction will be spontaneous for temperature higher than 647 K.
Explanation of Solution
In the given reaction due to the presence of more number of moles of gas in the product, the change in entropy is estimated as positive, and due to the presence of more number of bonds in the product compared to the reactant, the enthalpy is also positive because in products bonds are formed more than the reactants.
First, calculate the change in enthalpy by subtracting all of the product enthalpies from the reactant enthalpies:
In next step, find the change in entropy after subtracting all the product entropies from the reactant entropies:
In the final step, using Gibbs free energy form the first section to find the temperature of spontaneity. Spontaneous reactions occur when the change in Gibb’s free energy is less than zero which means that energy is released from the system.
To find out the range of the temperature which can cause the negative change in
This temperature is the cutoff for temperatures for spontaneity. All temperatures higher than this temperature will result in spontaneous reaction because of the larger contribution from entropy which has a positive sign. Therefore, the reaction will be spontaneous for temperature higher than

Interpretation:
The temperature range over which the reaction
Concept introduction:
A process which happens without any outward intervention is recognized as the spontaneous process. As per the 2nd law of thermodynamics, that states the universe’s entropy rises for any spontaneous process.
A process which happens when pressure and temperature both are constant, the determination of spontaneity can be done using Gibbs free energy:
Here, a sign of
Answer to Problem 10.75PAE
Solution:
There are no temperatures that this reaction will be spontaneous.
Explanation of Solution
The first change in enthalpy will be calculated after subtracting product enthalpies from the reactant enthalpies.
In next step find the entropy change by subtracting product entropies from the reactant entropies.
In the final step using the expression for Gibb’s free energy from the first section to find the temperature of spontaneity. Spontaneous reactions occur when the change in Gibb’s free energy is less than zero, meaning that energy is released from the system
The reaction will be never being spontaneous because all temperatures are positive, meaning that

Interpretation:
The temperature range over which the reaction
Concept introduction:
A process which happens without any outward intervention is recognized as the spontaneous process. As per the 2nd law of thermodynamics, that states the universe’s entropy rises for any spontaneous process.
A process which happens when pressure and temperature both are constant, the determination of spontaneity can be done using Gibbs free energy:
Here, a sign of
Answer to Problem 10.75PAE
Solution:
The temperature must be greater than 201.20 K for the reaction to be spontaneous
Explanation of Solution
This reaction is the opposite of a formation reaction because a compound is split into its elemental states. The following equation is the balanced overall reaction:
According, the change in entropy for the formation of phosphine can be found in a table of common values:
Next, calculate the change in entropy by subtracting all the product entropies from the reactant entropies:
Plugging the values for the reactants and products as found in the table of common thermodynamic values. Multiply each product or reactant through its coefficient listed in the overall balanced reaction.
Then the standard Gibbs free energy of reaction is: -
For the reaction to be spontaneous,
So, the temperature must be greater than 201.20 K for the reaction to be spontaneous.
Want to see more full solutions like this?
Chapter 10 Solutions
CHEM FOR ENGNRNG SDNTS (EBOOK) W/ACCES
- The following 'H NMR spectrum was taken with a 750 MHz spectrometer: 1.0 0.5 0.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 ' 2.0 1.0 0.0 (ppm) What is the difference Av in the frequency of RF ac Δν ac radiation absorbed by the a and c protons? (Note: it's not equal to the difference in chemical shifts.) Round your answer to 2 significant digits, and be sure it has an appropriate unit symbol. = O O a will shift left, c will shift right. O a will shift right, c will shift left. a and c will both shift left, with more space between them. Suppose a new spectrum is taken with a 500 MHz spectrometer. What will be true about this new spectrum? O a and c will both shift left, with less space between them. O a and c will both shift right, with more space between them. O a and c will both shift right, with less space between them. Which protons have the largest energy gap between spin up and spin down states? O None of the above. ○ a Ob Explanation Check C Ar B 2025 McGraw Hill LLC. All Rights Reserved.…arrow_forwardWhat mass of Na2CO3 must you add to 125g of water to prepare 0.200 m Na2CO3? Calculate mole fraction of Na2CO3, mass percent, and molarity of the resulting solution. MM (g/mol): Na2CO3 105.99; water 18.02. Final solution density is 1.04 g/mL.arrow_forward(ME EX2) Prblms Can you please explain problems to me in detail, step by step? Thank you so much! If needed color code them for me.arrow_forward
- Experiment #8 Electrical conductivity & Electrolytes. Conductivity of solutions FLINN Scientific Scale RED LED Green LED LED Conductivity 0 OFF OFF 1 Dim OFF 2 medium OFF 3 Bright Dim Low or Nowe Low Medium High 4 Very Bright Medium nd very high AA Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ SE=Strong Electrolyte, FE = Fair Electrolyte CWE = Weak Electrolyte, NE= Noni Electrolyte, #Solutions 1 0.1 M NaCl 2/1x 102 M NaCl, 3/1X103 M Nall Can Prediction M Observed Conductivity Very bright red Bright red Dim red you help me understand how I'm supposed to find the predictions of the following solutions? I know this is an Ionic compound and that the more ions in a solution means it is able to carry a charge, right? AAAA Darrow_forward(SE EX 2) Prblsm 4-7: Can you please explain problems 4-7 and color code if needed for me. (step by step) detail explanationsarrow_forward(SE EX 2) Problems 8-11, can you please explain them to me in detail and color-code anything if necessary?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





