Using tabulated
(a)
(b)
(c)
(d)
(e)

Interpretation:
Using tabulated thermodynamic data, value of
Concept introduction:
The standard change of Gibbs free energy is defined as the formation of 1 mole of a substance in its standard state from its constituent elements in their standard state.
For a reaction where reactant gives product, change in standard Gibbs free energy of reaction is as calculated as follows:
Here,
Answer to Problem 10.69PAE
Solution:
- -111.702 kJ
- 8.329 kJ
- -818.28 kJ
- -40.94 kJ
- 616 kJ
(a)
Explanation of Solution
For a reaction where reactant gives product, change in standard Gibbs free energy of reaction is as calculated as follows:
Thu, for the following reaction:
The change in standard Gibbs free energy of reaction is as calculated as follows:
(b)
For a reaction where reactant gives product, change in standard Gibbs free energy of reaction is as calculated as follows:
Thu, for the following reaction:
The change in standard Gibbs free energy of reaction is as calculated as follows:
(c)
For a reaction where reactant gives product, change in standard Gibbs free energy of reaction is as calculated as follows:
Thu, for the following reaction:
The change in standard Gibbs free energy of reaction is as calculated as follows:
(d)
For a reaction where reactant gives product, change in standard Gibbs free energy of reaction is as calculated as follows:
Thu, for the following reaction:
The change in standard Gibbs free energy of reaction is as calculated as follows:
(e)
For a reaction where reactant gives product, change in standard Gibbs free energy of reaction is as calculated as follows:
Thu, for the following reaction:
The change in standard Gibbs free energy of reaction is as calculated as follows:
The standard change of Gibbs free energy is defined as the formation of 1 mole of a substance in its standard state from its constituent elements in their standard state. Based on the thermodynamic table we have determined the below values: -
- -111.702 kJ
- 8.329 kJ
- -818.28 kJ
- -40.94 kJ
- 616kJ
Want to see more full solutions like this?
Chapter 10 Solutions
CHEM FOR ENGNRNG SDNTS (EBOOK) W/ACCES
- Hi can you please help me solve this problem? thank youarrow_forwardAn electrode process takes place at a metal-solution interface. Indicate the current condition that must be met for Faradaic rectification to occur.arrow_forwardAt a metal-solution interface, an electron is exchanged, and the symmetry factor beta < 0.5 is found in the Butler-Volmer equation. What does this indicate?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





