Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 10.6.1P
To determine
(a)
The maximum factored concentrated load that can be supported by using LRFD.
To determine
(b)
The maximum service concentrated load that can be supported by using ASD.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The details of an end bearing stiffener are shown in Figure . The stiffener plates are 9⁄16-inch thick, and the web is 3⁄16-inch thick. The stiffeners are clipped 1⁄2 inch to provide clearance for the flange-to-web welds. All steel is A572 Grade 50. a. Use LRFD and determine the maximum factored concentrated load that can be supported. b. Use ASD and determine the maximum service concentrated load that can be supported.
The truss below is pin connected at A and E, and is acted on by the forces shown.
E
A
D
B
Identify all of the ZERO-FORCE MEMBERS by checking the boxes below (if there are
none, leave all boxes unchecked):
BF
AF
BC
BH
CD
EG
-GH
AB
CH
DG
DH
DE
-FH
Determine the maximum service load, P, that can be applied if the live load-to-dead load ratio is 2.0. Each component is a PL 3⁄4 x 7 of A242 steel. The weld is a 1⁄2-inch fillet weld, E70 electrode. a. Use LRFD. b. Use ASD.
Chapter 10 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
Knowledge Booster
Similar questions
- One plate of size 100 mm x 12 mm is lap joined to another plate of size 200 mm x 12 mm by fillet weld of size 10 mm. Lap length is 100 mm. Fillet weld is provided on all the three sides of the smaller plate. Determine the maximum axial tension the joint could carry. Assume the plates are of mild steel of grade 250 N/mm?.arrow_forwardThe given beam is laterally supported at the ends and at the 1 3 points (points 1, 2, 3, and 4). The concentrated load is a service live load. Use Fy=50 ksi and select a W-shape. Do not check deflections. a. Use LRFD. b. Use ASD.arrow_forwardDetermine the adequacy of the hanger connection in Figure P7.8-2 Account for prying action. a. Use LRFD. b. Use ASD.arrow_forward
- Select an American Standard Channel shape for the following tensile loads: dead load = 54 kips, live load = 80 kips, and wind load = 75 kips. The connection will be with longitudinal welds. Use an estimated shear lag factor of U = 0.85. (In a practical design, once the member was selected and the connection designed, the value of U would be computed and the member design could be revised if necessary.) The length is 17.5 ft. Use Fy=50 ksi and Fu=65 ksi. a. Use LRFD. b. Use ASD.arrow_forwardCompute the maximum acceptable tensile SERVICE LOAD that may act on a single tee section that is connected to a gusset plate using welds 12 inches long, as shown in the figure. The service live load is three times the dead load. Use A992 steel. USE LRFD ONLY, no block shear will occur. WT12 x 38 Longitudinal welds 11.2 in? y = 3.0 in. Given: Properties of WT12 × 38: Ag = Use A992 Steel: F, = 50 ksi Fu = 65 ksi bf = 8.99in. %3D %3D LL = 3 DL %3D %3D tw y = centroidal distance bf C. What is the Governing Ultimate Tensile Capacity based on Net Fracture Round your answer to 3 decimal places.arrow_forwardSOLVE FOR1 HRarrow_forward
- Compute the maximum acceptable tensile SERVICE LOAD that may act on a single tee section that is connected to a gusset plate using welds 12 inches long, as shown in the figure. The service live load is three times the dead load. Use A992 steel. USE LRFD ONLY, no block shear will occur. What is the Maximum Tensile SERVICE Load Round your answer to 3 decimal places.arrow_forwardA W14X120 is used as a tension member in atruss. The flanges of the member are connected to a gusset plate by 3/4 inch boltas shown below. Use A36 steel with Fy-36 ksi and Fu=58 ksi Determine the Yielding Capacity of the section based on LRFD (kips) Determine the Tensile Rupture capacity of the section based on LRFD Determine the Demand to Governing Capacity Ratio (based on yielding and rupture only) if the Demand load carried by the section are DL=200 kips LL=400 kips use LRFD Properties and Dimension Ag=35.30 in^2 x = 6.24 in ry= 3.74 in d=14.5 in tf=0.94 in bf=14.7 in tw=0.59 in k=1.54 d=14.5 Y k1=1.5 bf=14.7 tf-0.94 X -tw=0.59 Harrow_forwardAsap plsarrow_forward
- Compute the maximum acceptable tensile SERVICE LOAD that may act on a single tee section that is connected to a gusset plate using welds 12 inches long, as shown in the figure. The service live load is three times the dead load. Use A992 steel. USE LRFD ONLY, no block shear will occur. Longitudinal welds bf Given: Properties of WT12 x 38: Ag = 11.2 in² y = 3.0 in. bf = 8.99in. Use A992 Steel: Fy = 50 ksi Fu = 65 ksi LL = 3 DL tw WT12 x 38 y = centroidal distance C. What is the Governing Ultimate Tensile Capacity based on Net Fracture Round your answer to 3 decimal places. Tarrow_forwardA tension connection consists of A36 steel double angles (two L4x4x1/4 shapes, or 2L4x4x1/4) fastened to a 4x10 No. 2 Red Oak member with a single row of four 0.875 inch A307 bolts. The connection is subjected to normal temperatures but wet in-service conditions. Assume the group action factor is C,=0.95 and the geometry factor is Ca=1. The controlling ASD load combination is D+ L where L is from occupancy. Elevation Cross Section L4x4x1/4 L4x4x1/4 Pa Р. 2L4x4x1/4 4х10 4x10 Plan L4x4x1/4 Pa/2 Pa 4x10 L4x4x1/4 Pa/2 • Determine the load, Pa, that the connection can support based on tension strength of the 4x10. Pa=. lb • Determine the load, Pa, that the connection can support based on gross tension yield of the double angles. The ASD design strength for gross tension yield is F,A,/1.67 where F=36 ksi, A,=1.93 in² for each L4x4x1/4. Pa=. lbarrow_forwardAssume that the gusset plate and welds are satisfied. A gap allowance of 1/16 inch is to be considered to fit the gusset plate in the HSS. The steel used in the tension member is ASTM A500 Grade C HSS 6 x 0.5 with a length of 30 feet. a.) Find the shear lag factor b.) Find the Effective net area (Ae) c.) Solve for the tensile strenngth 16-inch-long fillet weld HSS 6 x 0.5 1/2 in. thick gusset plate 17 inch longarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning