(a)
The design of a plate girder for the given conditions, the selection of girder cross section and the required spacing of intermediate stiffeners by using LRFD.
Answer to Problem 10.7.8P
Four panels spaced at 58.25in.
Explanation of Solution
Given:
Span length
Uniformly distributed live load
Superimposed dead load
Concentrated dead load
Concentrated live load
Formula used:
h is the depth of web
Calculation:
Assume a girder weight of
Determine the factored loads:
The factored moment and shear are
Determine the overall depth:
Use the maximum permissible depth of 110 in.
Try
To determine the web thickness, first examine the limiting values of
For
Minimum
For
Minimum
Try a
Determine whether the web is slender:
Therefore, the web is slender.
Estimate required flange size:
Try a
Girder weight =
Compression flange:
Check flange local buckling (FLB):
Since
Compute the plate girder strength reduction factor:
Try a
Shear: At left end (end panel),
Required
From Table 3-17a in the Manual,
Use
This spacing will apply for the remaining distance to the centerline of the girder. This distance is
For a spacing a of 67 in., the number of panels is
Use 4 panels at
At
Required
For
Therefore, stiffeners are needed in middle
Conclusion:
Therefore, Use a
(b)
The size of intermediate and bearing stiffeners.
Answer to Problem 10.7.8P
2 PL
2 PL
Explanation of Solution
Given:
Span length
Uniformly distributed live load
Superimposed dead load
Concentrated dead load
Concentrated live load
Calculation:
Intermediate stiffener size:
Available width:
Try
To determine the required moment of inertia, use the conservative approximation from the User Note in AISC G2.3:
Try two
Length: From Figure 10.9 in the textbook (Steel design),
Assume a flange-to-web weld size of
Length =
Use two PL
Design the bearing stiffeners at the supports for a load of
Maximum stiffener width =
Try
Try two plates,
Bearing strength:
Compressive strength: The maximum permissible length of web is
Compute the radius of gyration about an axis along the middle of the web:
Compute the compressive strength:
Therefore,
Use 2 PL
Because there is a large difference between the reactions and the interior concentrated loads, use 2 PL
Conclusion:
Use two PL
(c)
The design of the all welds
Answer to Problem 10.7.8P
Explanation of Solution
Given:
Span length
Uniformly distributed live load
Superimposed dead load
Concentrated dead load
Concentrated live load
Calculation:
Design the flange-to-web welds.
The shear flow is
At the support,
Minimum weld size = 3/16 in. (AISC Table J2.4)
Minimum length =
Use 1.5 in.
Use E70 electrodes,
where D is weld size in sixteenths.
Try an
For two welds,
Weld strength =
Base metal shear yield strength (web plate controls) is
Shear rupture strength is
Weld strength controls.
For a 1.5-in. length,
Required spacing:
Since this is less than twice the length of the weld, use a continuous weld.
For
This occurs when
Maximum clear spacing: From AISC E6,
Maximum
For
Shear at first interior load, left of load, =
So maximum spacing will not be used in the first quarter of the span.
Spacing required at left side of first interior load is
Check middle fourth of span. Shear on right side of load is
Welds for intermediate stiffeners
Minimum weld size = 3/16in. (AISC Table J2.4)
Minimum length =
Use 1.5 in.
Use E70 electrodes,
where D is weld size in sixteenths.
Try
For four welds, the weld strength is
The base metal shear yield strength is
Shear rupture strength is
Weld strength controls.
For a 1.5-in. length,
The shear to be transferred is
A center-to-center spacing of 3 in. is equal to twice the length of the weld segment, so
either a continuous weld or an intermittent weld can be used. Use intermittent welds.
Maximum clear spacing: From AISC E6,
Maximum
Use
Welds for bearing stiffeners at the supports
Minimum weld size = 3/16in. (AISC Table J2.4)
Minimum length =
Use 1.5 in.
Use E70 electrodes,
where D is weld size in sixteenths.
Try
For four welds, the weld strength is
The base metal shear yield strength is
Shear rupture strength is
Weld strength controls.
For a 1.5-in. length,
The shear to be transferred is
Reaction
Use
Conclusion:
Use 3/16 in. continuous fillet welds for the first 20 ft,
Want to see more full solutions like this?
Chapter 10 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
- Note: Provide a clear, step-by-step, simplified handwritten solution (no explanations), ensuring it is completed without any AI involvement. The solution must demonstrate expert-level accuracy and will be evaluated for its quality and precision. Please refer to the provided image for additional clarity. Double-check all calculations for correctness before submission. Thank you!. Question 1: (refer to the image for visual understanding) For the soil element shown on the right: a) Draw the Mohr’s circle for this case b) Find the major and minor principal stresses c) Find the normal and shear stresses on plane AB. Question 2: (refer to the image) A soil sample in a triaxial test with a cell pressure of 100 kPa fails when the vertical stress reaches 400 kPa. The resulting failureplane is observed to dip 60 degrees from horizontal (see figure). Assume that the soil is drained during the test, i.e. there is no pore pressure. a) Determine the friction angle of the soil. Hint: draw the…arrow_forwardPlease solve all pointsarrow_forward1: find out the optimal solution: 1- Reliability Function 2- Serial Configuration 3- M.T.T.F 4- Probability distribution function (P.D.F) 5- Failure rate function :calculate the reliability of the system for the following Figure 0.90 0.80 0.95 0.80 0.80 0.94) 0.80 : A system containing four connected compounds in series, each one has a distribution and its parameters as shown in the table below Component Scale parameter Shape parameter 1 100 1.20 2 150 0.87 3 510 - 1.80 4 720 1.00arrow_forward
- Time: 1. Hrs During the last ten days: In one of the productive operations, the electronic control calculator equipped with No. of defects for a specific volume of samples as shown: 10 9 8 7 6 5 4 3 2 1 Day No. 6673 6976 7505 6991 7028 6960 7916 7010 6591 7350 Total No. 53 55 60 58 16 22 49 48 64 17 Defect No. DRAW THAT & CHOOSE THE BEST A-P chart. B-C chart 1. Key functions of quality control include: A) Control of design, materials received and products and conduct studies of operations B-Design and develop reasonable specifications C) The use of equipment that gives the required accuracy D) Provide appropriate screening equipment 2. The basic principles of critical pathways are: A-fragmentation of the system to the objectives of the secondary clear and specific B-Drawing the network diagram C-Finding the critical path D- All of the above 3- The production system is the following: A-An integral part of the plant's completion B-An effective system to integrate the efforts of various…arrow_forwardPlease solve all pointsarrow_forwardPlease solve all pointsarrow_forward
- Please solve the question by hand with a detailed explanation of the steps.arrow_forward) We started a new production process and its study gave the total deviations The standard value (for 25 samples of the product, sample size 4) is .105 .Calculate the capacity of this process The product specification limits are: 6.30 = LSL 6.50 = USL Standard deviation in a manufacturing system is 0.038 = We made improvements to the system and the deviation has become Standard 0.030 = σ What is required is to calculate the estimated coefficient before and after the operation Optimization. What is your conclusion? : A find out the optimal solution: 1-Average Outgoing Quality AOQ 2- operating Characteristics Curve 100% Inspection 3-Acceptable Quality level 4- Average outgoing Quality AOQ 5- Capability Index CPKarrow_forwardFollowing are the data of gauge and discharge collected at a particular section of the river by stream gauging operation. Gauge reading Discharge Gauge reading Discharge (m) (cms) (m) (cms) 7.65 15 8.48 170 7.70 30 8.98 400 7.77 57 9.30 600 7.80 39 9.50 800 7.90 60 89 10.50 1500 7.91 100 11.10 2000 8.08 150 11.70 2400 1. Develop a rating curve for this stream at this section for use in estimating the discharge for a known gauge reading and fit a linear regression equation for use in estimation of stage for a known value of discharge. Use a value of 7.50 as the gauge reading corresponding to zero discharge. (20 pts) Equation 1 arith 2. What is the coefficient of correlation of the derived relationship? (10 pts) R2² arith Equation 2 log R2 log 3. Determine the stage for a discharge of 3500 cms (5 pts) 4. Determine the discharge for a stage of 15 m (5 pts) NB Do both arithmetic and logarithmic plotsarrow_forward
- Q2/ A (2m x 4 m) rectangular flexible foundation is placed above the ground surface (G.S) for two layers of clay, each layer 10 m thick. The modulus of Elasticity (E.) of the upper layer is 13 MN/m² and that of the lower layer is 15 MN/m². The Poisson ratio is (u, = 0.6) for the two layers. The pressure (stress) of 100 kN/m²is distributed along the surface of foundation. Determine the rigid immediate settlement at the corner of the foundation using Elastic theory method?arrow_forwardQ1/ Find the maximum allowable load for a square foundation (3 m x 3 m) placed vertically in cohesive soil? (Use Terzaghi equation) Note: Yt=Yeat=18 kN/m³ Depth of foundation = 1.5 m Depth of water table below the ground surface = 0.8 m Factor of safety 3 C=20 Yw = 10 kN/m³ = No vertical or inclined loadsarrow_forwardP.3.3 Oil of sp.gr. 0.9 flows through a vertical pipe (upwards). Two points A and B one above the other 40 cm apart in a pipe are connected by a U-tube carrying mercury. If the difference of pressure between A and B is 0.2 kg/cm², 1- Find the reading of the manometer. 2- If the oil flows through a horizontal pipe, find the reading in manometer for the same difference in pressure between A and B. Ans. 1- R= 0.12913 m, 2- R = 0.1575 m,arrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning