Concept explainers
For each of the following molecules, state the bond angle (or bond angles, as appropriate) that you would expect to see on the central atom based on the simple VSEPR model. Would you expect the actual bond angles to be greater or less than this?
- a CCl4
- b SCl2
- c COCl2
- d AsH3
(a)
Interpretation:
With the help of VSEPR theory, the expected bond angle(s) of given molecules on the central atom has to be stated.
Concept Introduction:
Valence bond theory: The VSEPR theory tells about the shapes of molecules and ions by taking the consideration that the outermost electron pairs are arranged about each atom so that the pairs of electrons are kept at a distance from one molecule to other, thereby minimizing the repulsion of electron-pair.
Steps to predict the geometry by VSEPR model:
- 1) The electron dot formula is written from the molecular formula.
- 2) The number of electron pairs including the bonding and non-bonding pairs around the central atom is determined from the electron dot formula.
- 3) The arrangement of these electron pairs about the central atom is determined.
- 4) The molecular geometry is determined from the directions of the bonding pairs or the arrangement.
To predict the bond angle of
Answer to Problem 10.37QP
The bond angle of
Explanation of Solution
The geometry of
(b)
Interpretation:
With the help of VSEPR theory, the expected bond angle(s) of given molecules on the central atom has to be stated.
Concept Introduction:
Valence bond theory: The VSEPR theory tells about the shapes of molecules and ions by taking the consideration that the outermost electron pairs are arranged about each atom so that the pairs of electrons are kept at a distance from one molecule to other, thereby minimizing the repulsion of electron-pair.
Steps to predict the geometry by VSEPR model:
- 1) The electron dot formula is written from the molecular formula.
- 2) The number of electron pairs including the bonding and non-bonding pairs around the central atom is determined from the electron dot formula.
- 3) The arrangement of these electron pairs about the central atom is determined.
- 4) The molecular geometry is determined from the directions of the bonding pairs or the arrangement.
To predict the bond angle of
Answer to Problem 10.37QP
The bond angle of
Explanation of Solution
The geometry of
(c)
Interpretation:
With the help of VSEPR theory, the expected bond angle(s) of given molecules on the central atom has to be stated.
Concept Introduction:
Valence bond theory: The VSEPR theory tells about the shapes of molecules and ions by taking the consideration that the outermost electron pairs are arranged about each atom so that the pairs of electrons are kept at a distance from one molecule to other, thereby minimizing the repulsion of electron-pair.
Steps to predict the geometry by VSEPR model:
- 1) The electron dot formula is written from the molecular formula.
- 2) The number of electron pairs including the bonding and non-bonding pairs around the central atom is determined from the electron dot formula.
- 3) The arrangement of these electron pairs about the central atom is determined.
- 4) The molecular geometry is determined from the directions of the bonding pairs or the arrangement.
To predict the bond angle of
Answer to Problem 10.37QP
The bond angle of
Explanation of Solution
The geometry of
(d)
Interpretation:
With the help of VSEPR theory, the expected bond angle(s) of given molecules on the central atom has to be stated.
Concept Introduction:
Valence bond theory: The VSEPR theory tells about the shapes of molecules and ions by taking the consideration that the outermost electron pairs are arranged about each atom so that the pairs of electrons are kept at a distance from one molecule to other, thereby minimizing the repulsion of electron-pair.
Steps to predict the geometry by VSEPR model:
- 1) The electron dot formula is written from the molecular formula.
- 2) The number of electron pairs including the bonding and non-bonding pairs around the central atom is determined from the electron dot formula.
- 3) The arrangement of these electron pairs about the central atom is determined.
- 4) The molecular geometry is determined from the directions of the bonding pairs or the arrangement.
To predict the bond angle of
Answer to Problem 10.37QP
The bond angle of
Explanation of Solution
The geometry of
Want to see more full solutions like this?
Chapter 10 Solutions
General Chemistry - Standalone book (MindTap Course List)
- The Ksp for lead iodide ( Pbl₂) is 1.4 × 10-8. Calculate the solubility of lead iodide in each of the following. a. water Solubility = mol/L b. 0.17 M Pb(NO3)2 Solubility = c. 0.017 M NaI mol/L Solubility = mol/Larrow_forwardPleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forwardPleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning