
Concept explainers
(a)
Interpretation:
The reaction of calcium carbonate to calcium oxide and carbon dioxide has to be classified as combination, decomposition, single replacement or double replacement reactions.
Concept Introduction:
Combination reactions: In these reactions, the reactant combines to form a single product. This type of reaction occurs between either two elements, an element and a compound or two compounds. It is recognized easily because it involves two reactants and only a single product.
Decomposition reactions: Decomposition reactions are the opposite of a combination reaction because decomposition reaction involves the breaking apart of a substance into simpler substances. Such a reaction is also easy to recognize because there is one reactant and more than one product.
Single replacement reactions: A reaction where an element in a compound is replaced by another element is called single replacement reaction or a substitution reaction. It generally involves between a dilute solution of an acid and a metal.
Double replacement reactions: This type of reactions occurs when the cation and the anions switch between two reactants to form new products. In order for the reaction to occur, one of the products is usually a solid precipitate, a gas or a molecular compound.
(b)
Interpretation:
The reaction of formation of ammonium chloride from ammonia and hydrogen chloride has to be classified as combination, decomposition, single replacement or double replacement reactions.
Concept Introduction:
Refer to part (a).
(c)
The reaction of formation of silver chloride and bromine from silver bromide and chlorine has to be classified as combination, decomposition, single replacement or double replacement reactions.
Concept Introduction:
Refer to part (a).
(d)
Interpretation:
The reaction of formation of silver iodide and sodium sulphate from silver sulphate and sodium iodide has to be classified as combination, decomposition, single replacement or double replacement reactions.
Concept Introduction:
Refer to part (a).

Want to see the full answer?
Check out a sample textbook solution
Chapter 10 Solutions
General Chemistry
- Calculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbonsarrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuu, don't solve it by AI plleeaasseeearrow_forward
- Please sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward
- III O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forward
- What is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forwardSelect the major product of the following reaction. Br Br₂, light D Br Br Br Brarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





