Chemistry: An Atoms-Focused Approach
14th Edition
ISBN: 9780393600681
Author: Gilbert
Publisher: W. W. Norton & Company
expand_more
expand_more
format_list_bulleted
Concept explainers
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Time Left:0:55:00
A student completes the experiment The Universal Gas Constant and obtains the
following data for one trial.
mass of magnesium (g):
Initial gas volume (ml):
Final Volume (mL):
Temperature (°C):
Atmospheric pressure
(inHg):
Ah (cm of water):
F3
80
모
Calculate the partial pressure of hydrogen, PH2, for this trial. Give your answer in torr
(mmHg).
1 in Hg = 25.4 mmHg
1 cm water = 0.735559 mmHg
1 mol Mg = 24.305 g Mg
TABLE D-4
TEMP
1_DEG₁_C_1
1
3
I
1
1
Q
F4
0
1
=
2
3
4
5
6
7
8
10
11
12
13
14
0.0
0.1
0.0326
0.00
35.30
21.3
30.21
16
17.13
F5
6.100 | 6.143
1 6.544 1 6.589
0.2
1
VAPOR PRESSURE OF HATER
0-30 DEG. C IN MM HG
1 4.579 4.612
4.646
| 4.924 | 4.959 4.995
15.291
4.660 4.714
5.0315.068
5.329 5.367 5.406 5.445
4.7484.783 4.818
5.104 | 5.141 | 5.178
5.484 5.523 5.563
5.888 5.930
6.230 16.274 6.318 5.363
15.683 15.723 | 5.764 | 5.8051 5.146
6.186
6.636
5.972 1 6.0141 6.057 1
6.407 1 6.453 6.498 1
6.82 | 6.729 6.776 6.823 | 6.871 | 6.919 | 6.967 1
T
T
1
I
T
I
1
17.0167,064…
2.) It’s a bad day in the lab! Two students are doing experiments. Each is 20 feet away from the professor. At the same time, each of them lets the same amount of a smelly gas into the room. One of them releases ammonia, NH3, and the other releases SO2. NH3 has a pungent odor, and SO2 smells like rotten eggs. The professor has no idea that this has happened, until she smell the first gas. Which chemical will the professor smell first? (NH3 or SO2) . If the professor starts to smell the first gas 42. seconds after the gas is released, how long will it take her to smell the second gas? sec.
* Note: It is unsafe practice to work with these chemicals in an open lab.
A balloon is sealed with 1.00 mol argon in a laboratory. The laboratory workspace is at sea level and the temperature is room temperature.
From the list of choices below. check all of the changes that would increase the volume of this balloon.
Placing the balloon into a warm (40 °C) environment, such as a water bath.
Moving the balloon to a different room-temperature laboratory at the top of a mountain.
Somehow (magically?) changing all of the argon atoms in the balloon to xenon atoms.
Allowing 0.10 mol of argon to be removed from the balloon.
Chapter 10 Solutions
Chemistry: An Atoms-Focused Approach
Ch. 10 - Prob. 10.1VPCh. 10 - Prob. 10.2VPCh. 10 - Prob. 10.3VPCh. 10 - Prob. 10.4VPCh. 10 - Prob. 10.6VPCh. 10 - Prob. 10.7VPCh. 10 - Prob. 10.8VPCh. 10 - Prob. 10.9VPCh. 10 - Prob. 10.10VPCh. 10 - Prob. 10.11VP
Ch. 10 - Prob. 10.13VPCh. 10 - Prob. 10.14VPCh. 10 - Prob. 10.15VPCh. 10 - Prob. 10.16VPCh. 10 - Prob. 10.17VPCh. 10 - Prob. 10.18VPCh. 10 - Prob. 10.19VPCh. 10 - Prob. 10.20VPCh. 10 - Prob. 10.21QACh. 10 - Prob. 10.22QACh. 10 - Prob. 10.23QACh. 10 - Prob. 10.24QACh. 10 - Prob. 10.25QACh. 10 - Prob. 10.26QACh. 10 - Prob. 10.27QACh. 10 - Prob. 10.28QACh. 10 - Prob. 10.29QACh. 10 - Prob. 10.30QACh. 10 - Prob. 10.31QACh. 10 - Prob. 10.32QACh. 10 - Prob. 10.33QACh. 10 - Prob. 10.34QACh. 10 - Prob. 10.35QACh. 10 - Prob. 10.36QACh. 10 - Prob. 10.37QACh. 10 - Prob. 10.38QACh. 10 - Prob. 10.39QACh. 10 - Prob. 10.40QACh. 10 - Prob. 10.41QACh. 10 - Prob. 10.42QACh. 10 - Prob. 10.43QACh. 10 - Prob. 10.44QACh. 10 - Prob. 10.45QACh. 10 - Prob. 10.46QACh. 10 - Prob. 10.47QACh. 10 - Prob. 10.48QACh. 10 - Prob. 10.49QACh. 10 - Prob. 10.50QACh. 10 - Prob. 10.51QACh. 10 - Prob. 10.52QACh. 10 - Prob. 10.53QACh. 10 - Prob. 10.54QACh. 10 - Prob. 10.55QACh. 10 - Prob. 10.56QACh. 10 - Prob. 10.57QACh. 10 - Prob. 10.58QACh. 10 - Prob. 10.59QACh. 10 - Prob. 10.60QACh. 10 - Prob. 10.61QACh. 10 - Prob. 10.62QACh. 10 - Prob. 10.63QACh. 10 - Prob. 10.64QACh. 10 - Prob. 10.65QACh. 10 - Prob. 10.66QACh. 10 - Prob. 10.67QACh. 10 - Prob. 10.68QACh. 10 - Prob. 10.69QACh. 10 - Prob. 10.70QACh. 10 - Prob. 10.71QACh. 10 - Prob. 10.72QACh. 10 - Prob. 10.73QACh. 10 - Prob. 10.74QACh. 10 - Prob. 10.75QACh. 10 - Prob. 10.76QACh. 10 - Prob. 10.77QACh. 10 - Prob. 10.78QACh. 10 - Prob. 10.79QACh. 10 - Prob. 10.80QACh. 10 - Prob. 10.81QACh. 10 - Prob. 10.82QACh. 10 - Prob. 10.83QACh. 10 - Prob. 10.84QACh. 10 - Prob. 10.85QACh. 10 - Prob. 10.86QACh. 10 - Prob. 10.87QACh. 10 - Prob. 10.88QACh. 10 - Prob. 10.89QACh. 10 - Prob. 10.90QACh. 10 - Prob. 10.91QACh. 10 - Prob. 10.92QACh. 10 - Prob. 10.93QACh. 10 - Prob. 10.94QACh. 10 - Prob. 10.95QACh. 10 - Prob. 10.96QACh. 10 - Prob. 10.97QACh. 10 - Prob. 10.98QACh. 10 - Prob. 10.99QACh. 10 - Prob. 10.100QACh. 10 - Prob. 10.101QACh. 10 - Prob. 10.102QACh. 10 - Prob. 10.103QACh. 10 - Prob. 10.104QACh. 10 - Prob. 10.105QACh. 10 - Prob. 10.106QACh. 10 - Prob. 10.107QACh. 10 - Prob. 10.108QACh. 10 - Prob. 10.109QACh. 10 - Prob. 10.110QACh. 10 - Prob. 10.111QACh. 10 - Prob. 10.112QACh. 10 - Prob. 10.113QACh. 10 - Prob. 10.114QACh. 10 - Prob. 10.115QACh. 10 - Prob. 10.116QACh. 10 - Prob. 10.117QACh. 10 - Prob. 10.118QACh. 10 - Prob. 10.119QACh. 10 - Prob. 10.120QACh. 10 - Prob. 10.121QACh. 10 - Prob. 10.122QACh. 10 - Prob. 10.123QACh. 10 - Prob. 10.124QACh. 10 - Prob. 10.125QACh. 10 - Prob. 10.126QACh. 10 - Prob. 10.127QACh. 10 - Prob. 10.128QACh. 10 - Prob. 10.129QACh. 10 - Prob. 10.130QACh. 10 - Prob. 10.131QACh. 10 - Prob. 10.132QACh. 10 - Prob. 10.133QACh. 10 - Prob. 10.134QACh. 10 - Prob. 10.135QACh. 10 - Prob. 10.136QACh. 10 - Prob. 10.137QACh. 10 - Prob. 10.138QACh. 10 - Prob. 10.139QACh. 10 - Prob. 10.140QACh. 10 - Prob. 10.141QACh. 10 - Prob. 10.142QACh. 10 - Prob. 10.143QACh. 10 - Prob. 10.144QACh. 10 - Prob. 10.145QACh. 10 - Prob. 10.146QACh. 10 - Prob. 10.147QACh. 10 - Prob. 10.148QACh. 10 - Prob. 10.149QACh. 10 - Prob. 10.150QA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Determine the total pressure in the flask when 1.02 atm of Oz is added to a 1.95 L flask containing 145 mL ethanol (CH3CH2OH). The density of ethanol is 703.00 kg/m. The temperature remains at 100 °C throughout the reaction. Note that the total pressure is calculated by adding up the pressure of ALL gases (O2, CO2, and H2O in this case).arrow_forward24.00 g of solid calcium carbonate completely decomposes at 579 °C in a 12.000 L sealed vessel. The products of this decomposition are solid calcium oxide and carbon dioxide gas. Note: R = 0.08206 Latm/molK Determine the stoichiometric coefficient of carbon dioxide in the balanced chemical equation. Determine the theoretical yield of carbon dioxide in moles Determine the pressure of carbon dioxide gas produced in this reactionarrow_forwardQ1 (a) 3.2 g of sulphur was produced in a reaction between 6.0 L of hydrogen sulfide gas with excess an amount of sulphur dioxide. With the aid of Table Q1 (a)(i) and Table Q1 (a)(ii), predict the temperature (in °C) of the reaction if it was conducted at 750 torr. Element Actinium Aluminum Americium Antimony Argon Arsenic Astatine Barium Berkelium Beryllium Bismuth Boron Bromine Cadmium Calcium Californium Carbon Cerium Cesium Chlorine Chromium Cobalt Copper Curiam CY с Ce Cs a Cr Co Ca Cm Dysprosium Dy Einsteinium Es Er Eu Fm F Fr Gd Ga Ge Erbium Europium Fermium Fluorine Francium Gadoliniam Gallium Germaniam Gold Hafnium Helium Holmium Hydrogen Indium Iodine Iridium Iron Krypton Lanthanam Lawrencium Lead Lithiam Lutetium Table Q1 (a)(i): Atomic Number and Atomic Mass of Elements Magnesium Manganese Symbol Ac Al Am Sb As Al Ba Bk Be Bi B Br Ca Hr He Ho H In I Ir Fe Kr La Lr Ph Li Lu Mg Mn Atomic number (2) 89 13 95 51 18 33 85 56 97 4 83 5 35 48 20 98 6 58 55 17 24 27 29 96 66 99 68…arrow_forward
- Given that the concentration of CH4 in the atmosphere is 1.8 ppm, calculate the total mass of this gas that is present in the atmosphere. Note that the total mass of the atmosphere is 5.1 x 1018 kg and that its average molar mass is 29.0 g/mol.arrow_forwardAn old gas cylinder you found in the back storage room of the ChE laboratory lost its label. Your lab supervisor is pretty sure that it is either He, Ne, Ar or Kr and you were tasked to figure out which one. What you did was that you transferred some of the gas from the old cylinder into an evacuated 2-L flask until the gauge pressure inside reached 1.00 atm. After sealing it, you carefully weighed the gas-filled flask and figured out that the mass of the gas (excluding that of the flask) was 13.6 g. If the temperature and barometric pressure in the lab was 27°C and 1 atm, what was the gas?arrow_forward1) Sulfuryl chloride, SO2Cl2, is a highly reactive gaseous compound. When heated, it decomposes as follows: SO2Cl2(g) ® SO2(g) + Cl2(g). This decomposition is endothermic. A sample of 3.509 grams of SO2Cl2 is placed in an evacuated 1.00 liter bulb and the temperature is raised to 375K. (a) What would be the pressure in atmospheres in the bulb if no dissociation of the SO2Cl2(g) occurred? (b) When the system has come to equilibrium at 375K, the total pressure in the bulb is found to be 1.43 atmospheres. Calculate the partial pressures of SO2, Cl2, and SO2Cl2 at equilibrium at 375K. (c) Give the expression for the equilibrium constant (either Kp or Kc) for the decomposition of SO2Cl2(g) at 375K. Calculate the value of the equilibrium constant you have given, and specify its units. (d) If the temperature were raised to 500K, what effect would this have on the equilibrium constant? Explain briefly. Note: Please answer just C and D. Thank you.arrow_forward
- 1) Sulfuryl chloride, SO2Cl2, is a highly reactive gaseous compound. When heated, it decomposes as follows: SO2Cl2(g) ® SO2(g) + Cl2(g). This decomposition is endothermic. A sample of 3.509 grams of SO2Cl2 is placed in an evacuated 1.00 liter bulb and the temperature is raised to 375K. (a) What would be the pressure in atmospheres in the bulb if no dissociation of the SO2Cl2(g) occurred? (b) When the system has come to equilibrium at 375K, the total pressure in the bulb is found to be 1.43 atmospheres. Calculate the partial pressures of SO2, Cl2, and SO2Cl2 at equilibrium at 375K. Note: Please answer both A and Barrow_forwardA gas phase reaction occurs in a syringe at constant temperature and pressure. If the initial volume in the syringe is 12.3 mL and the final volume is 4.1 mL, which of the following general reactions could have occurred? a) A(g) + B(g) → AB(g) b) 2A(g) + B(g) → A2B(g) c) 2AB(g) → A2(g) + 2B(g) d) 2AB (g) → A2(g) + B2(g) e) 2A2(g) + 4B(g) → 4AB(g) a earrow_forward4) Hydrogen peroxide decomposes spontaneously slowly to form water and oxygen gas according to the following chemical equation: 2 H,0, () — 2 Н,0 ()+ Oz (g) 2 H2O (I)+ O2 (g) This decomposition can be sped up with the addition of a catalyst. If 198 mL of H2O2 decomposes and the amount of oxygen gas collected over water is 72.5 L at 756 mmHg and 23°C, calculate the gas constant, R. (assume: PH,0, = 1.0 mL -9-)arrow_forward
- Ozone is a trace atmospheric gas which plays an important role in screening the Earth from harmful ultraviolet radiation, and the abundance of ozone is commonly reported in Dobson units. Imagine a column passing up through the atmosphere. The total amount of O3 in the column divided by its cross-sectional area is reported in Dobson units with 1 Du = 0.4462 mmol m−2. What amount of O3 (in moles) is found in a column of atmosphere with a cross-sectional area of 1.00 dm2 if the abundance is 250 Dobson units (a typical midlatitude value)? In the seasonal Antarctic ozone hole, the column abundance drops below 100 Dobson units; how many moles of O3 are found in such a column of air above a 1.00 dm2 area? Most atmospheric ozone is found between 10 and 50 km above the surface of the Earth. If that ozone is spread uniformly through this portion of the atmosphere, what is the average molar concentration corresponding to (a) 250 Dobson units, (b) 100 Dobson units?arrow_forwardTo study gas behavior, the reaction between solid magnesium and the hydrochloric acid solution is performed inside a stoppered, 125 mL flask. The reaction is shown. Mg(s)+2HCl(aq)⟶MgCl2(aq)+H2(g) Magnesium ribbon and 5 mL HCl are added to the flask. The solid magnesium occupies negligible volume. The data is obtained. Flask empty: 95.5 gFlask full of water: 247.5 gHCl: 1M, 5 mL added to flask, density ≈ 1.0 g/mLRubber stopper: takes up 5 mL of space in flask Using the data given, estimate, within 3 mL, the available volume in milliliters of the flask that the hydrogen gas will be able to occupy as it is produced.arrow_forward6.) This reaction occurs at constant temperature and pressure. The container in which this reaction is taking place has a movable wall. This allows the volume to change but keeps the pressure constant. At the beginning, only reactants are present. Then the reaction occurs. Given this, which of the following statements is true? (Circle one.) 2 H2 (g) + 1 CO (g) → 1 CH40 (g) (a) The volume stays the same as the reaction occurs (c) The volume increases as the reaction occurs (b) The volume decreases as the reaction occurs Explain: (d) Cannot be answered with the information givenarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning