(a)
Interpretation:
Estimation of the fugacity for ethylene and propylene in a mixture. Also estimate fugaciy coefficient for both gases in the mixture through the application of Eq. 10.63
Concept introduction:
The calculation of fugacity and fugacity coefficient of gases in the gas mixture is possible by using different correlation given as follows:
The fugacity coefficient for gas can be calculated by the equation given in the book as follows:
Where,
T = temperature
Where,
Similarly,
The fugacity of gases can be calculated by the definition of fugacity coefficient that is fugacity coefficient is the ratio of fugacity and pressure.
(a)
Answer to Problem 10.25P
Fugacity and fugacity coefficient of ethylene are 10.0485 bar and 0.957, respectively.
Fugacity and fugacity coefficient of propylene are 17.0625 bar and 0.875, respectively.
Explanation of Solution
Refer APPENDIX-B and Table-B.1 to determine critical properties and acentric factor of ethylene(1)/Propylene2) as:
Component | Pc (bar) | Tc (K) | Vc (cm3/mol) |
|
Zc |
Ethylene (1) | 50.40 | 282.3 | 131 | 0.087 | 0.281 |
Propylene (2) | 46.65 | 365.6 | 188.4 | 0.140 | 0.289 |
Where,
Pc = critical pressure
Tc = critical temperature
Vc = critical volume
Zc = critical compressibility factor
From the properties derived above, we can calculate the reduced pressure and temperature as follows:
Pressure P = 30 bar (given in question) and Temperature (T) = 1500C or 423.15K (given)
Y1= 0.35 (given)
So,
Reduced temperature for both gases can be calculated as:
Similar to the above calculated matrix we will calculate the reduced temperature as follows:
Critical volume of both the gases in the mixture can be calculated as given below:
With the help of critical volume and critical temperature, critical pressure of gases in the mixture can be calculated as follows:
The reduced compressibility factor can be calculated as:
After putting all values in the critical pressure formula, we will get:
At this calculated value of reduced temperature, we can calculate correlation constant as:
Overall correlation constant value in gas mixture can be calculated by equation:
Using above calculated values fugacity coefficient of gases calculated as given below:
Similarly, we can calculate fugacity coefficient for second species propylene:
Now finally we can estimate the fugacity of both gases by just multiplying P with derived fugacity coefficient values:
Therefore fugacity of ethylene is 10.0485 bar and fugacity of propylene is 17.0625 bar in the gas mixture.
(b)
Interpretation:
Estimation of the fugacity for ethylene and propylene in a ideal solution. Also estimate fugaciy coefficient for both gases in the solution by assuming that mixture as an ideal solution.
Concept introduction:
The calculation of fugacity and fugacity coefficient of gases in the ideal solution mixture is similar to a pure species mixture or an ideal gas mixture only difference is the replacement of yi with xi and calculation possible by using different correlation given as follows:
Fugacity coefficient for gases in ideal solution can be calculated by the equation given in the book as follows:
Where,
The fugacity of gases in ideal solution can be calculated by the definition of fugacity coefficient that is fugacity coefficient is the ratio of fugacity and pressure.
(b)
Answer to Problem 10.25P
Fugacity and fugacity coefficient of ethylene are 9.975 bar and 0.95, respectively.
Fugacity and fugacity coefficient of propylene are 17.0235 bar and 0.873, respectively.
Explanation of Solution
Refer APPENDIX-B and Table-B.1 to determine critical properties and acentric factor of ethylene(1)/Propylene2) as:
Component | Pc (bar) | Tc (K) | Vc (cm3/mol) |
|
Zc |
Ethylene (1) | 50.40 | 282.3 | 131 | 0.087 | 0.281 |
Propylene (2) | 46.65 | 365.6 | 188.4 | 0.140 | 0.289 |
Where,
Pc = critical pressure
Tc = critical temperature
Vc = critical volume
Zc = critical compressibility factor
From the properties derived above, we can calculate the reduced pressure and temperature as follows:
Pressure P = 30 bar (given in question) and Temperature (T) = 1500C or 423.15K (given)
x1= 0.35 (given)
So,
Reduced temperature of gases in the mixture can be calculated as:
Similar to the above calculated matrix we will calculate the reduced temperature as follows:
The critical volume of both the gases in the ideal mixture can be calculated as given below:
With the help of critical volume and critical temperature, critical temperature of gases in the mixture can be calculated as follows:
The reduced compressibility factor can be calculated as:
After putting all values in the critical pressure formula, we will get:
Reduced pressure will be:
At this calculated value of reduced temperature, we can calculate correlation constant as:
Accentric factor for both the species in ideal gas mixture calculated by the equation given below:
Using above calculated values fugacity coefficient of gases in ideal solution can be calculated as given below:
Similarly, we can calculate fugacity coefficient for second species propylene:
Now finally we can estimate the fugacity of both gases in ideal solution using equation (10.52) as follows:
Therefore fugacity of ethylene is 9.975 bar and fugacity of propylene is 17.0235 bar in the ideal solution.
Want to see more full solutions like this?
Chapter 10 Solutions
EBK INTRODUCTION TO CHEMICAL ENGINEERIN
- 9.3. An ideal PD controller has the transfer function P Ke (TDs + 1) E An actual PD controller had the transfer function P = Ke E TDS +1 (TDIẞ)s +1 where ẞis a large constant in an industrial controller. If a unit-step change in error is introduced into a controller having the second transfer function, show that P(1) = Kc (1 + Ae˜¯BD) where A is a function of ẞwhich you are to determine. For ẞ=5 and K = 0.5, plot P(t) versus tl tp. As ẞ, show that the unit-step response approaches that for the ideal controller.arrow_forward9.1. A pneumatic PI temperature controller has an output pressure of 10 psig when the set point and process temperature coincide. The set point is suddenly increased by 10°F (i.e., a step change in error is introduced), and the following data are obtained: Time, s psig 0- 10 0+ 8 20 7 60 90 5 3.5 Determine the actual gain (psig per degree Fahrenheit) and the integral time.arrow_forward2. A unit-step change in error is introduced into a PID controller. If Ke TD = 0.5, plot the response of the controller P(t). = =10, 1, andarrow_forward
- A distribution of values is normal with a mean of 211 and a standard deviation of 50.4. Find the probability that a randomly selected value is between 59.8 and 155.6. P(59.8 X 155.6) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z- scores rounded to 3 decimal places are accepted.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Depreciation and TaxesCalculate the depreciation using a suitable method (e.g., straight-line, declining balance) andincorporate tax implications based on current tax laws applicable to chemical plants. Use following attached Process Flow Diagram as reference for this question.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Revenue EstimationEstimate the annual revenue based on the production capacity, product selling price, and marketdemand. Groups should also consider potential market fluctuations. Use following attached Process Flow Diagram as reference for this question.arrow_forward
- Topic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.TASKS:1) Capital Cost EstimationProvide a detailed breakdown of the initial capital investment, including land, building,equipment, and installation costs. Include any assumptions made in the estimation. Use following attached Process Flow Diagram as reference for this question.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Breakeven Year CalculationUsing the cash flow analysis, calculate the breakeven year when the cumulative cash inflowequals the initial investment. Groups should graphically represent the breakeven point. Use following attached Process Flow Diagram as reference for this question.arrow_forwardTopic: Production of propylene glycol from glycerol derived from palm oil. QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Cash Flow AnalysisDevelop a projected cash flow statement for the first 10 years of plant operation, consideringall the costs and revenues. Include working capital, loans, and interest payments if applicable. Use following attached Process Flow Diagram as reference for this question.arrow_forward
- Topic: Production of propylene glycol from glycerol derived from palm oil.QUESTION:Estimate capital items, operating costs and economics of the plant. Finally, report the estimatedreturn.The Detailed Factorial Method with approximately 25% accuracy must be used for detailedeconomic evaluation.Plant lifetime is fixed at 15 years.1) Operational Cost AnalysisCalculate the yearly operational costs, including raw materials, labor, utilities, maintenance,and other recurring expenses. Provide a clear explanation of how these costs are derived. Use following attached Process Flow Diagram as reference for this question.arrow_forwardChemical Engineering Questionarrow_forwardA steam boiler or steam generator is a device used to produce steam by transferring heat to water. In our case, the combustion chamber is fueled with propane (C3H8) at a flowrate of 50.0 mol/h in an excess air of 50%. Assume that both propane and air are fed at 25ºC and the combustion gases leave the chamber at 200ºC. Pressure can be assumed to be atmospheric.* Determine: 1. The heat obtained assuming complete combustion. Compare the results using elements or compounds 2. The steam flowrate that could be generated if the heat is directed to obtain superheated steam at 2 bar and 160ºC from saturated liquid water at this pressure solvearrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The