CHEMISTRY(LOOSELEAF) W/CONNECT+EBOOK
CHEMISTRY(LOOSELEAF) W/CONNECT+EBOOK
7th Edition
ISBN: 9781259712500
Author: SILBERBERG
Publisher: MCG CUSTOM
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 10, Problem 10.19P

(a)

Interpretation Introduction

Interpretation:

Lewis structure for BH3 is to be drawn. Also, the type of octet-rule exception is to be determined.

Concept introduction:

Steps to draw the Lewis structure of the molecule are as follows:

Step 1: Find the central atom and place the other atoms around it. The atom in a compound which has the lowest group number or lowest electronegativity considered as the central atom.

Step 2: Calculate the total number of valence electrons.

Step 3: Connect the other atoms around the central atoms to the central atom with a single bond and lower the value of valence electrons by 2 of every single bond.

Step 4: Allocate the remaining electrons in pairs so that each atom can get 8 electrons.

The octet rule is defined that every element shares an octet (8 electrons) in their outermost electron shell to form compounds. In other words, the element that obeys the octet rule must have surrounded by eight electrons. If an atom has less than eight electrons, it is said to be electron deficient and if an atom has more than eight electrons around it, it is said to be the atom has an expanded octet.

There are three important exceptions of the octet rule:

1. A molecule with electron-deficient atoms.

2. A molecule with the odd-electron atoms.

3. An atom with expanded valence shells.

(b)

Interpretation Introduction

Interpretation:

Lewis structure for AsF4 is to be drawn. Also, the type of octet-rule exception is to be determined.

Concept introduction:

Steps to draw the Lewis structure of the molecule are as follows:

Step 1: Find the central atom and place the other atoms around it. The atom in a compound which has the lowest group number or lowest electronegativity considered as the central atom.

Step 2: Calculate the total number of valence electrons.

Step 3: Connect the other atoms around the central atoms to the central atom with a single bond and lower the value of valence electrons by 2 of every single bond.

Step 4: Allocate the remaining electrons in pairs so that each atom can get 8 electrons.

The octet rule is defined that every element shares an octet (8 electrons) in their outermost electron shell to form compounds. In other words, the element that obeys the octet rule must have surrounded by eight electrons. If an atom has less than eight electrons, it is said to be electron deficient and if an atom has more than eight electrons around it, it is said to be the atom has an expanded octet.

There are three important exceptions of the octet rule:

1. A molecule with electron-deficient atoms.

2. A molecule with the odd-electron atoms.

3. An atom with expanded valence shells.

(c)

Interpretation Introduction

Interpretation:

Lewis structure for SeCl4 is to be drawn. Also, the type of octet-rule exception is to be determined.

Concept introduction:

Steps to draw the Lewis structure of the molecule are as follows:

Step 1: Find the central atom and place the other atoms around it. The atom in a compound which has the lowest group number or lowest electronegativity considered as the central atom.

Step 2: Calculate the total number of valence electrons.

Step 3: Connect the other atoms around the central atoms to the central atom with a single bond and lower the value of valence electrons by 2 of every single bond.

Step 4: Allocate the remaining electrons in pairs so that each atom can get 8 electrons.

The octet rule is defined that every element shares an octet (8 electrons) in their outermost electron shell to form compounds. In other words, the element that obeys the octet rule must have surrounded by eight electrons. If an atom has less than eight electrons, it is said to be electron deficient and if an atom has more than eight electrons around it, it is said to be the atom has an expanded octet.

There are three important exceptions of the octet rule:

1. A molecule with electron-deficient atoms.

2. A molecule with the odd-electron atoms.

3. An atom with expanded valence shells.

Blurred answer
Students have asked these similar questions
16. The proton NMR spectral information shown in this problem is for a compound with formula CioH,N. Expansions are shown for the region from 8.7 to 7.0 ppm. The normal carbon-13 spec- tral results, including DEPT-135 and DEPT-90 results, are tabulated: 7 J Normal Carbon DEPT-135 DEPT-90 19 ppm Positive No peak 122 Positive Positive cus и 124 Positive Positive 126 Positive Positive 128 No peak No peak 4° 129 Positive Positive 130 Positive Positive (144 No peak No peak 148 No peak No peak 150 Positive Positive してし
3. Propose a synthesis for the following transformation. Do not draw an arrow-pushing mechanism below, but make sure to draw the product of each proposed step (3 points). + En CN CN
Show work..don't give Ai generated solution...

Chapter 10 Solutions

CHEMISTRY(LOOSELEAF) W/CONNECT+EBOOK

Ch. 10.2 - Prob. 10.6AFPCh. 10.2 - Prob. 10.6BFPCh. 10.2 - Prob. 10.7AFPCh. 10.2 - Prob. 10.7BFPCh. 10.2 - Prob. 10.8AFPCh. 10.2 - Prob. 10.8BFPCh. 10.3 - Prob. 10.9AFPCh. 10.3 - Prob. 10.9BFPCh. 10.3 - Prob. B10.1PCh. 10.3 - Prob. B10.2PCh. 10 - Prob. 10.1PCh. 10 - When is a resonance hybrid needed to adequately...Ch. 10 - Prob. 10.3PCh. 10 - Prob. 10.4PCh. 10 - Draw a Lewis structure for (a) SiF4; (b) SeCl2;...Ch. 10 - Draw a Lewis structure for (a) ; (b) C2F4; (c)...Ch. 10 - Prob. 10.7PCh. 10 - Prob. 10.8PCh. 10 - Prob. 10.9PCh. 10 - Draw Lewis structures of all the important...Ch. 10 - Prob. 10.11PCh. 10 - Draw Lewis structures of all the important...Ch. 10 - Prob. 10.13PCh. 10 - Prob. 10.14PCh. 10 - Draw the Lewis structure with lowest formal...Ch. 10 - Prob. 10.17PCh. 10 - Prob. 10.18PCh. 10 - Prob. 10.19PCh. 10 - Prob. 10.20PCh. 10 - These species do not obey the octet rule. Draw a...Ch. 10 - These species do not obey the octet rule. Draw a...Ch. 10 - Molten beryllium chloride reacts with chloride ion...Ch. 10 - Prob. 10.24PCh. 10 - Prob. 10.25PCh. 10 - Phosgene is a colorless, highly toxic gas that was...Ch. 10 - If you know the formula of a molecule or ion, what...Ch. 10 - In what situation is the name of the molecular...Ch. 10 - Prob. 10.29PCh. 10 - Prob. 10.30PCh. 10 - Consider the following molecular shapes. (a) Which...Ch. 10 - Use wedge-bond perspective drawings (if necessary)...Ch. 10 - Prob. 10.33PCh. 10 - Determine the electron-group arrangement,...Ch. 10 - Determine the electron-group arrangement,...Ch. 10 - Prob. 10.36PCh. 10 - Prob. 10.37PCh. 10 - Prob. 10.38PCh. 10 - Prob. 10.39PCh. 10 - Determine the shape, ideal bond angle(s), and the...Ch. 10 - Prob. 10.41PCh. 10 - Determine the shape around each central atom in...Ch. 10 - Prob. 10.43PCh. 10 - Prob. 10.44PCh. 10 - Prob. 10.45PCh. 10 - Prob. 10.46PCh. 10 - Arrange the following ACln species in order of...Ch. 10 - State an ideal value for each of the bond angles...Ch. 10 - Prob. 10.49PCh. 10 - Prob. 10.50PCh. 10 - Prob. 10.51PCh. 10 - Prob. 10.52PCh. 10 - How can a molecule with polar covalent bonds not...Ch. 10 - Prob. 10.54PCh. 10 - Consider the molecules SCl2, F2, CS2, CF4, and...Ch. 10 - Consider the molecules BF3, PF3, BrF3, SF4, and...Ch. 10 - Prob. 10.57PCh. 10 - Prob. 10.58PCh. 10 - Prob. 10.59PCh. 10 - Prob. 10.60PCh. 10 - Prob. 10.61PCh. 10 - Prob. 10.62PCh. 10 - Prob. 10.63PCh. 10 - Prob. 10.64PCh. 10 - Prob. 10.65PCh. 10 - Prob. 10.66PCh. 10 - When SO3 gains two electrons, forms. (a) Which...Ch. 10 - The actual bond angle in NO2 is 134.3°, and in it...Ch. 10 - Prob. 10.69PCh. 10 - Propylene oxide is used to make many products,...Ch. 10 - Prob. 10.71PCh. 10 - Prob. 10.72PCh. 10 - Prob. 10.73PCh. 10 - Prob. 10.74PCh. 10 - Prob. 10.75PCh. 10 - Prob. 10.76PCh. 10 - Prob. 10.77PCh. 10 - A gaseous compound has a composition by mass of...Ch. 10 - Prob. 10.79PCh. 10 - Prob. 10.80PCh. 10 - Prob. 10.81PCh. 10 - Prob. 10.82PCh. 10 - Pure HN3 (atom sequence HNNN) is explosive. In...Ch. 10 - Prob. 10.84PCh. 10 - Prob. 10.85PCh. 10 - Oxalic acid (H2C2O4) is found in toxic...Ch. 10 - Prob. 10.87PCh. 10 - Hydrazine (N2H4) is used as a rocket fuel because...Ch. 10 - Prob. 10.89PCh. 10 - Prob. 10.90PCh. 10 - Prob. 10.91PCh. 10 - Consider the following molecular shapes: Match...Ch. 10 - Prob. 10.93PCh. 10 - Prob. 10.94PCh. 10 - Prob. 10.95PCh. 10 - Phosphorus pentachloride, a key industrial...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Types of bonds; Author: Edspira;https://www.youtube.com/watch?v=Jj0V01Arebk;License: Standard YouTube License, CC-BY